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Abstract: 

This paper offers a starting point for reflection on the similarities and differences of the impact on financial markets of 
the Great Recession of 2008 and of the Covid-19 pandemic of 2020 in terms of volatility and correlation risk among the most 
significant financial indexes in Europe. More precisely, the dataset employed includes the daily returns of Ftse100, CaC40, 
Dax30 and FtseMib40, with reference to the two time periods in which the two major crises manifested their effects on the 
markets. We use two different methodological approaches: the analysis of the daily conditional variance using various families 
of GARCH models and the study of the weekly realized volatility using HAR models. Furthermore, the estimation of the 
dependence structure of the GARCH residuals using copula functions is performed. 
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Introduction 

In the last 15 years, the world economy has been put under pressure by two major and dramatic shocks that 
occurred in 2008 and 2020. The first of these, known to history as the Great Recession, brought down the 
economies of the main nations of the world and originated in the United States. The second is represented by the 
Sars-Cov-2 pandemic, initially spread to China, a virus that caused the respiratory disease known as Covid-19 from 
which we still suffer some aftermath but which exhausted its disruptive force in 2021. Of course, these are two 
completely different crises. However, we can identify at least two points in common: their severity in terms of the 
effects they have caused on the markets and on the economic-industrial sector in general, and their global nature, 
since both crises concerned all developed and developing countries. 

In this paper we intend to study the two crises in terms of volatility and correlation risk on the markets of four 
of the main important European countries, taking into consideration the stock market indexes of the UK, France, 
Germany and Italy. The objective is to understand, in the period regarding the two crises, if there are similarities or 
systemic differences in the volatility of the market and in the correlation between the indexes. We will address the 
problem with a time series of returns covering the period before the crises, the period of the crises and the one 
after that. 

The impact of the Covid-19 pandemic on the financial markets and more in general on the real economy 
was object of numerous publications in these last three years, and to this day the subject is much debated in the 
literature. Among others, We and Han (2021) uses event-study methodology to estimate the impact of the pandemic 
on the transmission of monetary policy to financial markets, Uddin et al. (2021) examine the effect of the pandemic 
on stock market volatility and whether economic strength, measured by a set of economic characteristics and 
factors such as economic resilience, intensity of capitalism, level of corporate governance, financial development, 
monetary policy rate can potentially mitigate the possible detrimental effect of the global pandemic on stock market 
volatility. Certainly, the pandemic shock has increased the severity of stock market volatility confirming the 
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arguments in Engle and Ng (1993) who found that negative return shocks influence volatility more than positive 
return shocks. Moreover, as argued in Anderson et al. (2001) the asymmetry between stock market returns and 
volatility has become stronger with negative returns rather than positive returns. For a report on the impact of the 
pandemic on the financial markets the reader can consult Zhanga et al. (2020) who show that the pandemic has 
created an unprecedented level of risk, causing investors to suffer significant loses in a very short period of time. 
For example, the Ftse100 index dropped more than 10% on 12 March, 2020, in its worst day since 1987. The US 
index S&P 500 closed down -9.51% for its worst day since October 19, 1987. Liu et al. (2020) evaluate the short-
term impact of the coronavirus outbreak on 21 leading stock market indices in major affected countries including 
Japan, Korea, Singapore, the USA, Germany, Italy, and the UK. According to Morales and Callaghan (2012) the 
global stock markets were becoming more interdependent and important crises, like the Covid-19 pandemic or the 
Great Recession of 2008, even if are originated in one country they soon spread to many others. Stock market 
movements become increasingly correlated. 

We will not mention the countless publications relating to the great recession of 2008 of the last 14 years 
because it would go beyond the scope of this work. We would only quote the popular book of the Nobel Prize Paul 
Krugman (2008) who lays bare the financial crises of 2008 tracing it to the failure of regulation to keep pace with 
an out-of-control financial system. Furthermore, Farmer (2012 and 2015) establishes that the fall in the stock market 
in the autumn of 2008 provides a plausible causal explanation for the magnitude of the Great Recession and 
Anagnostidis et al. (2016) empirically investigate the impact of the 2008 financial crises on the weak-form efficiency 
of twelve Eurozone stock markets. 

In this paper we adopt two approaches which are intensively used in the financial econometrics literature: 
the generalized autoregressive conditional heteroskedasticity (GARCH) model proposed by Bollerslev (1986) as a 
generalization of ARCH models introduced by Engle (1982) and the Heterogeneous Autoregressive model of 
Realized Volatility (HAR-RV) suggested by Corsi (2009). The class of GARCH models is particularly suitable to 
describe the typical behaviour of financial time series, namely the fact that large (small) price changes tend to be 
followed by large (small) price changes of either sign; however, this kind of dependency can be exploited only to 
improve interval or density forecasts, but not point forecasts. However, their popularity grew when they were applied 
to high frequency data which revealed some of their critical issues such as the phenomena of volatility clustering, 
leverage effect and asymmetry. This prompted the researchers to find adequate generalizations of the two models 
that took into account these characteristics of the time series. Nelson (1991) introduces the exponential GARCH 

model (EGARCH) where the natural logarithm of the conditional variance ht
2 is a function of εt−1

2 ,   εt−1 and of the 

natural logarithm of the lagged variance ht−1
2 . The model is more suitable to capture the negative correlation 

between lagged returns and the current conditional variance since positive or negative residuals of the same 
magnitude will have a different impact on the level of the volatility. Glosten, Jagannathan & Runkle (1993) propose 

the GJR-GARCH model where the standard GARCH(1,1) is augmented by It−1εt−1
2   where It−1 is an indicator 

function which takes value 1 if εt−1 is negative and zero otherwise. In this study we consider GARCH, EGARCH and 
GJR-GARCH models for the selected market stock returns in order to effectively and efficiently estimate volatility 
dynamics in both crises’ periods. 

On the other hand, HAR-RV, introduced for the first time by Corsi (2009), was designed to parsimoniously 
capture the strong persistence typically observed in return volatility and has become the landmark in the study of 
realized variance due to its consistently good forecasting performance. Furthermore, HAR-RV models are 
particularly suitable to capture some stylized facts about financial data such as the strong persistence of 
autocorrelations of square and absolute returns relating to log time periods (months, bi-months, quarters), or the 
fact that the return probability densities have a shape which depends on the time scale. In our application we use 
HAR-RV models to estimate the weekly evolution of the realized volatility in both crises’ periods. 

The aspect of correlation risk is investigated starting from the GARCH residuals by using copula functions 
to recover their joint distribution. An extensive and detailed discussion of copulas can be found in Nelsen (1994) 
and Cherubini et al. (2012). The original result is the Sklar theorem (1959) which showed that any n-dimensional 
joint distribution function may be decomposed into its n marginal distributions, and a copula, which completely 
describes the dependence between the n variables. In time series framework, we need to handle conditioning 
variables and their joint conditional distributions. For this reason, Patton (2006a, 2006b) extends the Sklar’s 
theorem and introduces the notion of conditional copula (definition 1 and theorem 1 in Patton, 2006b) which will be 
intensively used in this paper in the part of the study relating to the correlation analysis. 

The plan of the paper is the following. Section 1 presents the dataset under study. Section 2 introduces both 
volatility models, the dependence structure and comments the estimation results. 
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1. The Dataset 

The study is based on a dataset made up of four stock market indexes relating to the four major European 
countries: Ftse100 (Great Britain), Cac40 (France), Dax30 (Germany) and FtseMib40 (Italy). We use time series of 
daily log-returns of the indexes in two distinct periods covering the two economic crises under consideration. The 
first period, relating to the Great Recession of 2008, runs from January 2, 2007 to December 31, 2009 for a total of 
781 observations. The second period, relating to the Covid-19 pandemic, covers the period from January 2, 2019 
to December 31, 2021 for a total of 783 observations. As we can observe from the time intervals, we have selected 
the periods considering three different moments that can somehow overlap. The first observation period covers the 
performance of the indexes in the phase preceding the two crises, therefore in 2007 and part of 2008 for the Great 
Recession and 2019 and the beginning of 2020 for the pandemic. The second period represents the heart of the 
two crises when they brutally manifested their effects (second half of 2008 for the Great Recession and all of 2020 
and the beginning of 2021 for the pandemic). Finally, the third period consists of the post-crises period, until their 
effects are exhausted, at least as regards the financial markets. 

Already from a first look at Table 1, which collects the descriptive statistics of the indexes in the two periods, 
we can extract some rather significant considerations. It seems at first glance that the pandemic has had a more 
violent impact on the lows of market returns. In fact, much larger values of the kurtosis are noted for all four indexes, 
with particular relevance for the FtseMib40, thus denoting the more leptokurtic form of the distribution of returns in 
the pandemic period. Not only that, even the skewness that was positive for three out of four indexes during the 
Great Recession, becomes very negative during the pandemic, signalling a greater tendency for returns to assume 
negative values. This is compensated by a lower volatility but considering the whole period. It should be noted that 
on average the returns of the indexes were negative during the period we considered concerning the Great 
Recession and positive during the period we considered concerning the Covid-19 pandemic. Looking also at the 
graphs of the log-returns shown in Figures 1 to 4, we can in fact notice some temporal congruences. All the indexes 
undergo a strong shock near the period in which the two crises manifest themselves in all their drama. A strong 
increment in volatility is observed in the last quarter of 2008 (the announcement of the bankruptcy of the Lehmann 
Brothers was on 15 September) and in the first quarter of 2020, coinciding with the arrival of restrictive measures, 
such as the lockdown, which was announced by the various governments between 9th of March and 23rd of March. 
However, some differences are not negligible. For example, it is quite evident by observing the fluctuations of 
returns that the impact of the pandemic was stronger but shorter than that of the Great Recession, a period in which 
the turbulence (and consequently the volatility) had a greater temporal span. The reason may be that most 
economic agents feared the Great Crises of 2008 more than the pandemic. As if he had more fears about the 
consequences. In fact, the Great Recession originated in the heart of finance and therefore can be considered a 
structural crisis destined to change paradigms. Vice versa, the pandemic was sudden, violent and profound but did 
not originate from the economy but from a completely external event. 

Table 1. Stock market indexes: descriptive statistics relating to log-returns in percentage form for both periods 

Great Recession period 

 Ftse100 Cac40 Dax30 FtseMib40 
N. of obs. 781 781 781 781 

Mean -0.01777 -0.04369 -0.00816 -0.07381 
Maximum 9.38434 10.59459 14.49533 10.87690 
Minimum -9.26577 -9.47154 -6.78616 -8.59811 

Std. dev. 1.70305 1.84432 1.71142 1.84104 
Skewness -0.06005 0.15208 0.75193 0.06753 

Excess Kurtosis 5.60791 5.89951 10.37753 5.30209 
Covid-19 pandemic period 
 Ftse100 Cac40 Dax30 FtseMib40 

N. of obs. 783 783 783 783 
Mean 0.01189 0.05280 0.04249 0.05113 

Maximum 8.66681 8.05611 9.32503 8.54946 
Minimum -11.51243 -13.0983 -13.03668 -18.54115 
Std. dev. 1.22666 1.36826 1.37768 1.50243 

Skewness -1.29624 -1.48465 -1.29965 -3.05551 
Excess Kurtosis 16.32931 16.85040 15.54943 36.59369 
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Figure 1. Log-returns of the Ftse100 stock market for both periods 
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Figure 2. Log-returns of the Cac40 stock market for both periods 
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Figure 3. Log-returns of the Dax30 stock market for both periods 
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Figure 4. Log-returns of the FtseMib40 stock market for both periods. 
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2. Volatility Analysis 

2.1. The GARCH Models’ Approach 

We proceed to the analysis of the volatility of the log-returns of the indexes using GARCH models. 
Particularly, in equity return time series empirical investigations have detected a negative correlation between 
lagged returns and the current conditional variance. In other words, volatility seems to increase in bear markets, 
which is exactly the case under study in this paper. The mechanism is often called ”leverage effect”. In general, 
standard GARCH models (Bollerslev, 1986) are not fit for capturing this effect. A number of alternative models have 
been proposed and we consider two of them: exponential GARCH (Nelson, 1991) and GJR-GARCH models 
(Glosten et al., 1993). We denote by Ft−1 the information set available in the market up to time t − 1. Let (εt)t be a 
sequence of i.i.d. random variable which represents the innovation of the model. We will consider two different 
types of conditional distributions: the Student’s t distribution, εt|Ft−1 ∼ i.i.d.t(ν) and the Skewed-t distribution, εt|Ft−1 
∼ i.i.d.skt(ν,η), where ν is the parameter degrees of freedom and η is the skewness parameter. The log-returns xt 
are characterized by the following equation: 

xt = c + ht εt,  where ht is the conditional volatility of xt.  

In this paper, we use three different specifications for the conditional variance h2. The first one is the standard 
GARCH(1,1) model introduced by Bollerslev (1986): 

ht
2=ω+αxt−1

2 +βht−1
2             (3.1) 

where α is the arch parameter and β is the GARCH parameter.  

The second specification is given by the exponential GARCH (EGARCH) model proposed by Nelson (1991), 
where the equation of the conditional variance is: 

ln⁡(ht
2)=ω+αεt−1 + γ(|εt−1| − E[|εt−1|]) + β ln(ht−1

2 )⁡      (3.2) 

where the coefficient α captures the sign effect and γ the size effect.  

The two components αεt−1 and γ (|εt−1| − E[|εt−1|]) have both mean zero and when εt−1>0 the slope of the 

linear component of ln⁡(ht
2) is α + γ whereas if εt−1< 0 the slope is α − γ. Thus, the conditional variance process 

responds asymmetrically to rises and falls in stock price. The third specification is the GJR-GARCH model 
introduced by Glosten, Jagannathan and Runkle (1993) in which the variance equation is: 

ht
2=ω+αεt−1

2 + δIt−1εt−1
2 + βht−1

2         (3.3) 

where α and β have the same meaning as in standard GARCH models whereas δ represents the leverage term 
since the indicator function It−1 takes value 1 if εt−1 is negative and zero otherwise. 

It is a question of selecting the appropriate model for each of the four market indexes considering the 
different structure of the conditional variance and the different properties of the distribution of innovations. In order 
to select the correct models to investigate the dependence structure among stock market returns within the Great 
Recession and Covid pandemic periods, we use the Akaike Information Criterion (AIC), introduced by Akaike (1998) 
which estimates the amount of information lost by a model considering the trade-off between the goodness of fit 
and the number of parameters of the model. 

−1
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2.2. Results 

In this section we present the estimation results within the models considered above in the two periods 
under observation. In particular, several issues significant from an economic and financial point of view are 
discussed: (i) the asymmetry between positive and negative returns and the conditional variance; (ii) the persistence 
of shocks to variance; (iii) fat tails and asymmetry in the conditional distribution of innovations. The estimated 
parameters for each model are reported in Tables 2 - 9. Next, we examine the findings implied by the parameter 
estimates. 

The asymmetry relation between returns and volatility is represented by α in the EGARCH model and δ in 
the GJR-GARCH model: we note that they are highly significant in both periods. In all EGARCH models α is 
negative which indicates that volatility tends to increases when stock returns are negative (bad news). However, 
some differences between the two crises periods can be appreciated. Particularly, the estimate of α is higher (e.g., 
more negative) in the Covid-19 pandemic period for all stock indexes, indicating a higher leverage effect induced 
by the pandemic than the Great Recession period. This finding is particularly clear in the case of the FtseMib40 
where the estimate of α goes from about -0.11 during the pandemic period to about -0.19 during the Great 
Recession. In the case of the GJR-GARCH models we see that the parameter δ (which measures the sign effect) 
is highly significant in both periods, while the parameter α (size effect) is never significantly different from zero 
indicating that the good news has no impact on the conditional volatility in either of the two crises periods. As 
regards δ, only in the case of the Ftse100 it falls from about -0.19 during the Great Recession to about -0.09 during 
the Covid pandemic, whereas in all other three market indexes δ raises, signalling that bad news have more impact 
on volatility. (ii) Tables 2 - 9 report the persistence of shocks for each model denoted by pˆ. Note that the persistence 
is measured by α + β for standard GARCH, β for EGARCH and α + β + δκ, where κ is the expected value of the 
standardized residuals below zero, for GJR-GARCH models. The persistence concerns how fast large volatilities 
decay after a shock. In all estimated models pˆ is very high and in some cases very close to one. However, volatility 
of the Dax30 and of the FtseMib40 presents persistence values lower or close 0.98 during the Covid pandemic. (iii) 
As regards the parameters of the distributions of innovations we can distinguish the case Student’s t with ν d.o.f. 
from the case skew-t, with ν d.o.f. and η as skewness parameter. 

Table 2. Marginal models: estimation of parameters* Ftse100. Period: Great Recession 

Great Recession 

Stock market index  t-GARCH(1,1) t-EGARCH(1,1) t-GJR-GARCH(1,1) 
 

c: 
0.061716 0.012177 0.024621 

 (0.034693) (0.035490) (0.040603) 

 
ω: 

0.030705 0.010288 0.039651∗ 

 (0.019867) (0.005356) (0.016287) 
 

α: 
0.130211∗ -0.142017∗ 0.000000 

 (0.028873) (0.021489) (0.024587) 
 

γ 
 0.141505∗  

  (0.009655)  

Ftse100 
δ: 

  0.191429∗ 

   (0.043051) 
 

β: 
0.864594∗ 0.978873∗ 0.888238∗ 

 (0.055543) (0.002013) (0.021921) 
 

ν: 
6.7904∗ 8.441907∗ 8.048084∗ 

 (1.763425) (2.663707) (2.427168) 

 pˆ=0.994805 pˆ=0.978873 pˆ=0.983953 
 LB=0.1005 LB=0.1408 LB=0.1220 
 AIC=3.4880 AIC=3.4513 AIC=3.4588 

 skt-GARCH(1,1) skt-EGARCH(1,1) skt-GJR-GARCH(1,1) 
 

c: 
0.043043 -0.014997 c: -0.002673 

 (0.041056) (0.023578) (0.041540) 
 

ω: 
0.033693 0.014160∗ 0.039643∗ 

 (0.018113) (0.004739) (0.015864) 
 

α: 
0.127258∗ -0.144862∗ 0.000000 

 (0.026538) (0.019949) (0.023129) 

 
γ: 

 0.139517  
  (0.010562)  

Ftse100 δ   0.195640∗ 
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Great Recession 
Stock market index  t-GARCH(1,1) t-EGARCH(1,1) t-GJR-GARCH(1,1) 
   (0.042576) 

 
β: 

0.866852∗ 0.977693∗ 0.887810∗ 

 (0.024397) (0.002103) (0.021174) 
 

ν: 
7.5636∗ 9.8855∗ 9.7292∗ 

 (2.146346) (3.633106) (3.550384) 
 

η: 
0.918901∗ 0.882925∗ 0.882272∗ 

 (0.046477) (0.045023) (0.046359) 

persistence pˆ= 0.994109 pˆ = 0.977693 pˆ = 0.981497 
  LB = 0.1005 LB = 0.1527 LB = 0.1334 
  AIC = 3.4868 AIC = 3.4463 AIC = 3.4538 

Note: * The table also reports the p-value of the Ljung-Box test on residuals and the AIC value relating to GARCH, eGARCH 
and GJR-GARCH models with different distribution of innovations. 

 

Table 3. Marginal models: estimation of parameters*. Ftse100. Period: Covid-19 pandemic 

Covid-19 pandemic 
Stock market index t-GARCH(1,1) t-EGARCH(1,1) t-GJR-GARCH(1,1) 

 
c 

0.058058∗ 0.041243∗ 0.040620 

 (0.026251) (0.000004) (0.026855) 
 

ω 
0.024625 -0.013169∗ 0.012963 

 (0.014617) (0.000001) (0.007128) 
 

α 
0.092324∗ -0.194141 0.000000 

 (0.038061) (0.000009) (0.015828) 

 
γ 

 -0.069993∗  

  (0.000021)  
Ftse100 

δ 
  0.088987∗ 

   (0.028647) 
 

β 
0.890833∗ 0.996750∗ 0.939363∗ 

 (0.042590) (0.000075) (0.021117) 

 
ν 

4.2408∗ 4.1430∗ 4.3109∗ 

 (0.646002) (0.000391) (0.648831) 
  pˆ=0.983157 pˆ=0.996749 pˆ=0.983857 
  LB=0.6875 LB=0.9619 LB=0.5649 

  AIC=2.6752 AIC=2.6367 AIC=2.6643 
  skt-GARCH(1,1) skt-EGARCH(1,1) skt-GJR-GARCH(1,1) 

 
c 

0.030407 -0.007153∗ 0.006453 

 (0.028994) (0.000001) (0.029820) 

 
ω 

0.024276 -0.003712∗ 0.014499∗ 

 (0.013951) (0.000002) (0.007694) 
 

α 
0.091632∗ -0.186057∗ 0.000000 

 (0.036425) (0.000297) (0.015681) 
 

γ 
 -0.056627∗  

  (0.000028)  

Ftse100 
δ 

  0.095884∗ 

   (0.031180) 
 

β 
0.889737∗ 0.993759∗ 0.936074∗ 

 (0.041368) (0.000450) (0.022908) 
 

ν 
4.4896 4.6700∗ 4.5507∗ 

 (0.727836) (0.001225) (0.730324) 

 
η 

0.896207∗ 0.829042∗ 0.878161∗ 

 (0.044271) (0.011729) (0.043911) 

persistence pˆ = 0.981369 pˆ= 0.993759 pˆ= 0.981235 
  LB = 0.6865 LB = 0.7716 LB = 0.5588 

  AIC = 2.6713 AIC = 2.6256 AIC = 2.6580 
Note: * The table also reports the p-value of the Ljung-Box test on residuals and the AIC value relating to GARCH, eGARCH 

and GJR-GARCH models with different distribution of innovations.  



Journal of Applied Economic Sciences 

 116 

Table 4. Marginal models: estimation of parameters*. Cac40. Period: Great Recession 

Great Recession 
Stock market index  t-GARCH(1,1) t-EGARCH(1,1) t-GJR-GARCH(1,1) 

 
c 

0.041853 -0.016234 -0.002592 
 (0.041554) (0.039414) (0.043685) 
 

ω 
0.041774∗ 0.017010∗ 0.044805∗ 

 (0.020734) (0.006620) (0.017484) 

 
α 

0.12667∗ -0.167502∗ 0.000000 

 (0.026225) (0.025115) (0.024044) 
 

γ 
 0.145699∗  

  (0.011103)  
Cac40 

δ 
  0.210255∗ 

   (0.047379) 

 
β 

0.87049∗ 0.974111∗ 0.882315∗ 

 (0.023092) (0.000793) (0.021762) 
 

ν 
7.5191∗ 8.892091∗ 8.920602∗ 

 (2.271002) (2.852622) (2.797807) 
  pˆ=0.992715 pˆ=0.974110 pˆ=0.987442 

  LB=0.0581 LB=0.0957 LB=0.0944 
  AIC=3.6562 AIC=3.6100 AIC=3.6169 
  skt-GARCH(1,1) skt-EGARCH(1,1) skt-GJR-GARCH(1,1) 

 
c 

0.027795 -0.035123 -0.022717 
 (0.045534) (0.039125) (0.044763) 

 
ω 

0.039919 0.020325∗ 0.045558 

 (0.020621) (0.006809) (0.017353) 
 

α 
0.118666∗ -0.169169∗ 0.000000 

 (0.025334) (0.024288) (0.023535) 
 

γ 
 0.143905∗  

  (0.012724)  

Cac40 
δ 

  0.211304 
   (0.046942) 
 

β 
0.873442∗ 0.972711∗ 0.882521 

 (0.023615) (0.000751) (0.021633) 

 
ν 

7.9304∗ 9.5045∗ 9.9480 

 (2.222908) (3.233203) (3.453095) 
 

η 
0.943127∗ 0.912274∗ 0.911442 

 (0.046150) (0.045352) (0.046471) 
persistence pˆ= 0.992108 pˆ= 0.972711 pˆ= 0.984841 

  LB = 0.0573 LB = 0.1027 LB = 0.1002 
  AIC = 3.6569 AIC = 3.6082 AIC = 3.6151 

Note: * The table also reports the p-value of the Ljung-Box test on residuals and the AIC value relating to GARCH, eGARCH 
and GJR-GARCH models with different distribution of innovations. 

Table 5. Marginal models: estimation of parameters*. Cac40. Period: Covid-19 pandemic 

Covid-19 pandemic 

Stock market index t-GARCH(1,1) t-EGARCH(1,1) t-GJR-GARCH(1,1) 
 

c 
0.134891 0.115647∗ 0.107026∗ 

 (0.024865) (0.019830) (0.025762) 
 

ω 
0.048739∗ -0.018364∗ 0.029415∗ 

 (0.019838) (0.005064) (0.013700) 

 
α 

0.194028∗ -0.207246∗ 0.000000 

 (0.043325) (0.025143) (0.020890) 
 

γ 
 0.051230∗  

  (0.018911)  
Cac40 

δ 
  0.272240∗ 

   (0.076222) 

 
β 

0.804974∗ 0.994085∗ 0.852833∗ 

 (0.034060) (0.000270) (0.038711) 

 ν 3.5844∗ 3.6616∗ 3.7669∗ 
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Covid-19 pandemic 
Stock market index t-GARCH(1,1) t-EGARCH(1,1) t-GJR-GARCH(1,1) 

 (0.390712) (0.463760) (0.515426) 

  pˆ=0.998999 pˆ=0.994085 pˆ=0.988953 
  LB=0.8646 LB=0.8506 LB=0.7774 

  AIC=2.8090 AIC=2.7573 AIC=2.7759 
  skt-GARCH(1,1) skt-EGARCH(1,1) skt-GJR-GARCH(1,1) 
 

c 
0.082768∗ 0.044885∗ 0.046325 

 (0.029603) (0.022258) (0.029037) 

 
ω 

0.040002∗ -0.002826 0.028296 

 (0.016184) (0.006111) (0.015182) 
 

α 
0.188767∗ -0.204696∗ 0.00000 

 (0.045041) (0.022752) (0.019976) 
 

γ 
 0.072472∗  

  (0.011403)  

Cac40 
δ 

  0.274873 
   (0.071222) 
 

β 
0.810233∗ 0.987515∗ 0.858516 

 (0.034414) (0.000016) (0.035656) 

 
ν 

3.8998∗ 4.1097∗ 4.1599 

 (0.564476) (0.584156) (0.618022) 
 

η 
0.834306∗ 0.782270∗ 0.794225 

 (0.042228) (0.038924) (0.041323) 
persistence pˆ = 0.998999 pˆ= 0.987515 pˆ = 0.982005 

  LB = 0.8774 LB = 0.7882 LB = 0.7316 
  AIC = 2.7947 AIC = 2.7315 AIC = 2.7518 

Note: * The table also reports the p-value of the Ljung-Box test on residuals and the AIC value relating to GARCH, eGARCH 
and GJR-GARCH models with different distribution of innovations. 

Table 6. Marginal models: estimation of parameters* Dax30. Period: Great Recession 

Great Recession 

Stock market index t-GARCH(1,1) t-EGARCH(1,1) t-GJR-GARCH(1,1) 
 

c 
0.075871 0.038901 0.041317  

 (0.042397) (0.039770) (0.041410) 
 

ω 
0.038474∗ 0.010048 0.040410∗ 

 (0.018008) (0.006056) (0.016132) 
 

α 
0.111013∗ -0.125168∗ 0.004322 

 (0.029529) (0.022956) (0.021905) 

 
γ 

 0.149733∗  

  (0.011576)  

Dax30 
δ 

  0.168518∗ 

   (0.041015) 
 

β 
0.879478∗ 0.978583∗ 0.893706∗ 

 (0.025625) (0.000843) (0.021929) 
 

ν 
6.4465∗ 7.297017∗ 7.328084∗ 

 (1.639115) (1.971554) (1.993729) 

  pˆ=0.990491 pˆ=0.978583 pˆ=0.982287 
  LB=0.5888 LB=0.7433 LB=0.6471 

  AIC=3.4482 AIC=3.4504 AIC=3.4560 
  skt-GARCH(1,1) skt-EGARCH(1,1) skt-GJR-GARCH(1,1) 
 

c 
0.054332 0.009539 0.012041 

 (0.043335) (0.038847) (0.043164) 
 

ω 
0.036305∗ 0.013249∗ 0.040443∗ 

 (0.018234) (0.006138) (0.015419) 
 

α 
0.106965∗ -0.127816∗ 0.000000 

 (0.024639) (0.021862) (0.020581) 

 
γ 

 0.144185∗  

  (0.010546)  
Dax30 δ   0.171761∗ 
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Great Recession 
Stock market index t-GARCH(1,1) t-EGARCH(1,1) t-GJR-GARCH(1,1) 
   (0.039873) 

 
β 

0.882906∗ 0.977521∗ 0.897645∗ 

 (0.023642) (0.000992) (0.020745) 
 

ν 
6.6201∗ 7.5737∗ 7.7529∗ 

 (1.620166) (2.118300) (2.233117) 
 

η 
0.930272∗ 0.900234∗ 0.901499∗ 

 (0.043472) (0.042295) (0.043190) 

persistence pˆ= 0.989871 pˆ= 0.977520 pˆ= 0.980299 
  LB = 0.5856 LB = 0.7787 LB = 0.6688 
  AIC = 3.4777 AIC = 3.4466 AIC = 3.4525 

Note: * The table also reports the p-value of the Ljung-Box test on residuals and the AIC value relating to GARCH, eGARCH 
and GJR-GARCH models with different distribution of innovations. 

Table 7. Marginal models: estimation of parameters* Dax30. Period: Covid-19 pandemic. 

Covid-19 pandemic 
Stock market index t-GARCH(1,1) t-EGARCH(1,1) t-GJR-GARCH(1,1) 

 
c 

0.114608∗ 0.081520∗ 0.083927∗ 

 (0.023751) (0.026708) (0.030235) 

 
ω 

0.065942∗ -0.007983 0.057167∗ 

 (0.025630) (0.004493) (0.022707) 
 

α 
0.151198∗ -0.160201∗ 0.005893 

 (0.044921) (0.024155) (0.026290) 
 

γ 
 0.048261∗  

  (0.020719)  

Dax30 
δ 

  0.226836∗ 

   (0.069490) 
 

β 
0.827881∗ 0.993921∗ 0.848135∗ 

 (0.038825) (0.000226) (0.039977) 
 

ν 
3.7282∗ 3.9283∗ 3.9437∗ 

 (0.465947) (0.596723) (0.611340) 

  pˆ=0.979078 pˆ=0.993921 pˆ=0.967446 
  LB=0.5485 LB=0.2778 LB=0.5295 
  AIC=2.9720 AIC=2.9455 AIC=2.9494 

  skt-GARCH(1,1) skt-EGARCH(1,1) skt-GJR-GARCH(1,1) 
 

c 
0.063773∗ -0.033572 0.021497 

 (0.031012) (0.031516)  

 
ω 

0.054098∗ 0.190765 0.050713 

 (0.022155) (0.014386) (0.026989) 

 
α 

0.138626∗ -1.717237 0.000002 

 (0.039113) (0.274943) (0.027724) 
 

γ 
 1.115753  

  (0.065187)  
Dax30 

δ 
  0.230145∗ 

   (0.082042) 
 

β 
0.839888∗ 0.963240 0.862791∗ 

 (0.036714) (0.001039) (0.052899) 

 
ν 

4.0668∗ 2.0153 4.1711∗ 

 (0.656903) (0.002201) (0.555200) 

 
η 

0.856972∗ 0.827922 0.826871∗ 

 (0.041697) (0.033391) (0.041010) 
persistence pˆ= 0.978514 pˆ= 0.963240 pˆ= 0.967968 

  LB = 0.5563 LB = 0.0643 LB = 0.5917 

  AIC = 2.9613 AIC = 2.9687 AIC = 2.9323 
Note: * The table also reports the p-value of the Ljung-Box test on residuals and the AIC value relating to GARCH, eGARCH 

and GJR-GARCH models with different distribution of innovations. 

Table 8. Marginal models: estimation of parameters*. FtseMib40. Period: Great Recession 
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Great Recession 
Stock market index  t-GARCH(1,1) t-EGARCH(1,1) t-GJR-GARCH(1,1) 

 c -0.007071 -0.055443 -0.044366 

  (0.043009) (0.038296) (0.043873) 
 ω 0.036067∗ 0.009654 0.029745∗ 

  (0.018069) (0.004217) (0.013695) 
 α 0.130173∗ -0.110524∗ 0.014293 

  (0.026624) (0.017592) (0.022575) 

 γ  0.164537∗  

   (0.038868)  
FtseMib40 δ   0.164632∗ 

    (0.037802) 
 β 0.865370∗ 0.985833∗ 0.893443∗ 

  (0.024104) (0.005358) (0.020181) 

 ν 8.3886∗ 10.266683∗ 10.073052∗ 

  (2.5879) (3.761368) (3.698645) 
  pˆ=0.995543 pˆ=0.985833 pˆ=0.990052 
  LB=0.4160 LB=0.4460 LB=0.4992 

  AIC=3.6160 AIC=3.5893 AIC=3.5939 
  skt-GARCH(1,1) skt-EGARCH(1,1) skt-GJR-GARCH(1,1) 

 c -0.039872 -0.094475∗ -0.080624 

  (0.043428) (0.044342) (0.043725) 

 ω 0.028345 0.011903 0.026401∗ 

  (0.015893) (0.007813) (0.012239) 
 α 0.124085∗ -0.109736∗ 0.011633 

  (0.024111) (0.019770) (0.020370) 
 γ  0.159996∗  

   (0.031370)  

FtseMib40 δ   0.164058∗ 

    (0.035386) 
 β 0.872813∗ 0.987323∗ 0.899732∗ 

  (0.021986) (0.003885) (0.018205) 
 ν 9.3153∗ 12.7351∗ 12.2265∗ 

  (3.053593) (5.644610) (5.247733) 

 η 0.859960∗ 0.829509∗ 0.837429∗ 

  (0.044076) (0.043874) (0.044375) 
persistence pˆ= 0.996898 pˆ= 0.987323 pˆ= 0.988845 

  LB = 0.3896 LB = 0.4375 LB = 0.5002 

  AIC = 3.6068 AIC = 3.5748 AIC = 3.5811 
Note: * The table also reports the p-value of the Ljung-Box test on residuals and the AIC value relating to GARCH, eGARCH 

and GJR-GARCH models with different distribution of innovations. 

Table 9. Marginal models: estimation of parameters*. FtseMib40. Period: Covid-19 pandemic 

Covid-19 pandemic 
Stock market index t-GARCH(1,1) t-EGARCH(1,1) t-GJR-GARCH(1,1) 

 c 0.125327∗ 0.074370∗ 0.098272∗ 

  (0.028081) (0.000020) (0.031675) 
 ω 0.064943∗ -0.006674∗ 0.038341 

  (0.026309) (0.000004) (0.052727) 
 α 0.135662∗ -0.203473∗ 0.000000 

  (0.039310) (0.000105) (0.097932) 

 γ  -0.081995∗  

   (0.000015)  
FtseMib40 δ   0.178940∗ 

    (0.078045) 
 β 0.840461∗ 0.989992∗ 0.884180∗ 

  (0.034810) (0.000046) (0.134873) 

 ν 3.8795∗ 4.3906∗ 4.2205∗ 

  (0.542437) (0.001137) (0.715032) 
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Covid-19 pandemic 
Stock market index t-GARCH(1,1) t-EGARCH(1,1) t-GJR-GARCH(1,1) 

  pˆ=0.976123 pˆ=0.989991 pˆ=0.973650 

  LB=0.8386 LB=0.7895 LB=0.9707 
  AIC=3.0492 AIC=2.9724 AIC=3.0138 

  skt-GARCH(1,1) skt-EGARCH(1,1) skt-GJR-GARCH(1,1) 
 c 0.067071∗ -0.009884∗ 0.032832 

  (0.034055) (0.000035) (0.072635) 
 ω 0.054194∗ 0.008849∗ 0.032236 

  (0.022053) (0.000014) (0.504810) 

 α 0.137843∗ -0.185316∗ 0.00000 

  (0.035181) (0.000240) (1.224455) 

 γ  -0.069205∗  

   (0.000318)  
FtseMib40 δ   0.189746 

    (0.098309) 
 β 0.841064∗ 0.985877∗ 0.890407∗ 

  (0.032722) (0.004101) (0.173320) 
 ν 4.3335∗ 5.1001∗ 4.6181∗ 

  (0.694712) (0.004340) (1.141546) 

 η 0.825332∗ 0.7556035∗ 0.792305∗ 

  (0.042898) (0.003655) (0.059188) 

persistence pˆ = 0.978907 pˆ= 0.985877 pˆ= 0.976112 
  LB = 0.8008 LB = 0.8393 LB = 0.9607 

  AIC = 3.0261 AIC = 2.9424 AIC = 2.9907 
Note: * The table also reports the p-value of the Ljung-Box test on residuals and the AIC value relating to GARCH, eGARCH 

and GJR-GARCH models with different distribution of innovations. 

All these parameters are significant. There is a clear direction about the parameter ν. For all stock market 
indexes ν drops drastically from the Great Recession period to the Covid-19 pandemic period indicating thicker tails 
in the conditional distributions in the second period. In the case of FtseMib40 the estimates fall more than half, from 
about 10-12 to 4-5. The same can be said of η, the skewness parameter. Notice that for the parametrization of the 
skew-t distribution that we have used, there is no asymmetry in the distribution when η = 1, therefore the more η is 
less than 1 the more skewness there is in the data. The effect of the two crises is clear: all stock market returns are 
characterized by increased asymmetry during the Covid-19 pandemic (values of η are close to 0.8 or lower) than 
during the Great Recession (values of η close to 0.9 or upper). 

2.3. Conditional Volatility Dynamics 

The AIC values allow for a selection of the optimal model by period and by market index. We have 
highlighted the model with the lowest AIC in tables 2-9. It is observed that regardless of the period and the market 
index, the optimal models are characterized by an innovation with skew-t distribution since the asymmetry plays a 
decisive role. The Ljung-Box test (Ljung and Box, 1973), whose p-value is shown in tables 2-9, suggests the 
absence of serial autocorrelation in the residuals thus ensuring the goodness of the selected models. 

Figures 5 - 8 compare the volatility of the market indexes in the two periods. A substantial difference lies in 
the fact that in the period preceding the Great Recession, we can say from the first months of 2008, there was an 
increase in market volatility before the peak which occurred in the last quarter of 2008 after the announcement of 
the use of the chapter 11 of Lehman Brothers on September 15th. This is due to the fact that the crises was 
”announcing”, the signals were already clear before the summer, it was not sudden. Conversely, the pandemic 
crises were unexpected, and in fact volatility undergoes a dramatic increase in early 2020 without having grown in 
the previous months. Covid was initially undervalued and even if the news from China arrived at the end of 2019, 
the markets did not believe in such a devastating impact. Furthermore, we observe that volatility remains high after 
the Great Recession throughout 2009 which was a year of strong contraction of economies around the world. On 
the contrary, in the Covid period, immediately after the peak due to the arrival of the pandemic and the closures 
decided by all European governments, there is a rapid reduction with new peaks at the end of 2020 due to the new 
widespread lockdowns, albeit less stringent. Within the countries we note that during the period of the Great 
Recession, volatility remained higher in the Euro countries than in Great Britain: this is partly attributable to the 
different attitude held by the Central Banks. While the Bank of England, in the footsteps of the US Federal Reserve, 
began the quantitative easing plan in March 2009, the European Central Bank was much less reactive. 
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Figure 5: Daily GARCH volatility of the Ftse100 stock market for both periods 

Ftse100: 01/01/2007 − 31/12/2009 

    2007 2008 2009 2010 
 

Ftse100: 01/01/2019 − 31/12/2021 

    2019 2020 2021 2022 
 

Figure 8 shows that the volatility of the FtseMib40 returns has reached the highest peak among the four 
indices under observation in the Covid period. A possible explanation can be found in the fact that Italy was the first 
Euro- pean country in which the Sars-Cov2 virus was detected and that the Italian economy is undoubtedly the 
weakest in terms of growth and fundamentals, a situation that has not changed between the two crises we are 
studying. In fact, even in 2009 volatility remained higher following the Great Recession precisely due to a greater 
structural weakness perceived by the financial markets. 

For a more in-depth understanding of the dynamics of conditional volatility in the two crises periods analysed, 
we compute the average volatility in three sub-periods identified as before, during and after the crises. More 
precisely, in the case of the Great Recession we split the sample dates as follows: before the crises, from January 
1, 2007 to February 29, 2008; during the crises, from March 1, 2008 to December 31, 2008; after the crises, January 
1, 2009 to December 31, 2009. On the other hand, regarding the Covid-19 pandemic we split the sample dates as 
follows: before the crises, from January 1, 2019 to January 31, 2020; during the crises, from February 1, 2020 to 
March 31, 2021; after the crises, April 1, 2021 to December 31, 2021. Table 10 collects the average values of the 
estimated volatility in different sub-periods expressed in percentage form. There are at least two considerations 
that emerge. 

Table 10: Conditional volatility: average values in the sub-periods (percentages). 

Great Recession period 

Stock market index Ftse100 Cac40 Dax30 FtseMib40 

before 1.25 1.31 1.14 1.13 

during 2.03 2.18 1.92 2.14 

after 1.37 1.55 1.58 1.83 

Covid-19 pandemic period 

Stock market index Ftse100 Cac40 Dax30 FtseMib40 

before 0.77 0.90 1.01 1.06 

during 1.51 1.67 1.65 1.73 

after 0.74 0.92 1.04 0.96 

 
The increase in the market volatility determined by the two crises is remarkable for each of the indexes but 

does not have a single direction. For example, in the case of the Ftse100 and the Cac40, the pandemic has caused 
an increase in volatility of around 90% while the Great Recession only by 60%. The opposite happens for the Dax30 
and the FtseMib40: in the first case the impact of the two crises was approximately the same, whereas in the second 
it was the Great Recession that caused the most consistent raise in market volatility. A significant difference 
between the two crises is noticeable if we consider the reduction in volatility following the end of the most intense 
period of the two crises. In fact, it is definitely more marked after the pandemic where volatility was reduced by 
approximately 40-50%, while after the Great Recession the reduction, albeit significant, reached 20-30%. 
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Figure 6: Daily GARCH volatility of the Cac40 stock market for both periods 

CaC40: 01/01/2007 − 31/12/200 

    2007 2008 2009 2010 
 

CaC40: 01/01/2019 − 31/12/2021 

    2019 2020 2021 2022 

Figure 7: Daily GARCH volatility of the Dax30 stock market for both periods. 

Dax30: 01/01/2007 − 31/12/2009 

    2007      2008      2009     2010 
Dax30: 01/01/2019 − 31/12/2021 

 

   2019 2020 2021 2022 

Figure 8: Daily GARCH volatility of the FtseMib40 stock market for both periods 

FtseMib40: 01/01/2007 − 31/12/2009 

    2007 2008 2009 2010 
FtseMib40: 01/01/2019 − 31/12/2021 

    2019 2020 2021 2022 

2.4. HAR-RV Models Approach 

The Heterogeneous Autoregressive model of realized Volatility (HAR-RV) pro- posed by Corsi (2009) is a 
very popular model to estimate and forecasting realized volatility. The formulation is flexible and simple and consists 
in a linear function of lagged squared returns over the same horizon together with the squared returns over longer 
horizons. Some extension of these models can be found in Buccheri and Corsi (2021). The original methodology 
was applied to high-frequency data in order to obtain a daily realized variance from the aggregation of squared 
residuals available within one trading day. In our application we work with weekly realized variance obtained from 
daily squared returns. So, denote by RVt the weekly realized volatility obtained by summing the squared daily 
returns: 

RVt =√
1

5
∑ xt−i

25
i=1  where the subscript t indicates the week, while i indicates the day within the week. 

The HAR-RV model we use in this paper is an additive cascade of three realized volatility lagged of one 
period corresponding to three different time horizons, weekly, monthly and bi-monthly. In equation 

RVt = θ0 + θ1RVt−1 + θ2RVt−1
m  m + θ3RVt−1

2m + ut,       (3.4) 
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where RVt
m is the monthly lagged realized volatility and RVt

2m is the bi-monthly lagged realized volatility. 

Both of them are determined by aggregating the weekly realized volatilities:  

RVt
m=√

1

4
∑ RVt−i
4
i=1  and RVt

2m=√
1

8
∑ RVt−i
8
i=1   

As Corsi (2009) explains, the model focuses on the heterogeneity that originates from the difference in the 
time horizons since financial markets are populated by economic agents having a large spectrum of trading 
frequency. On one side, we have intraday speculators, who work with a very short time horizon and on the other 
side we have institutional investors (hedge funds, banks, insurance companies) who trade much less frequently. 
Such different types of market participants cause and perceive different types of volatility components. Therefore, 
in this application, we identify three volatility components: weekly (which is the reference time), monthly and bi-
monthly. 

2.5. Results 

Table 11 reports the results of the estimation of the HAR-RV model for each stock market index for both 
crises periods. From the value of standard errors, we deduce that not all the three realized volatilities aggregated 
over the three different horizons are significantly different from zero. The exceptions are the coefficients of bi-
monthly realized volatility for Dax30 and FtseMib40 during the Great Recession and the coefficients of monthly 
realized volatility for Ftse100, Cac40 and FtseMib40 during the pandemic. This implies a different reaction of agents 
with respect to various types of volatilities in the two crises. It can be noted that a substantial difference in the 
weights of the volatility components concerns the realized bi-monthly volatility. For each index the coefficients θ3 
are definitely higher in the pandemic period than in the Great Recession period, where even in two cases they are 
not significantly different from zero. A possible interpretation lies in the fact that the pandemic had a resurgence 
between the end of 2020 and the beginning of 2021 creating further uncertainty, while the Great Recession, after 
its terrible impact at the end of 2008, was better managed thanks, above all, to the interventions of Central Banks 
in 2009. Surprisingly, the monthly volatility component represented by the coefficient θ2 is absent in the pandemic 
period whereas is strong in the Great Recession period and its weight is greater for Dax30 and FtseMib40. 

Table 11. Estimation results for HAR(3) models 

Great Recession period 

Stock market index Ftse100 Cac40 Dax30 FtseMib40 

θ0 0.2324021∗ 0.2728977∗ 0.24355341∗ 0.2544113∗ 

θ1 
(0.007711) 

0.3911141∗ 

(0.0101272) 

0.4070375∗ 

(0.006478) 

0.32630034∗ 

(0.008294) 

0.3360613∗ 

θ2 
(0.011743) 
0.1494234∗ 

(0.009789) 
0.1233975∗ 

(0.009752) 
0.39528274∗ 

(0.006121) 
0.3683461∗ 

 (0.061361) (0.058137) (0.098708) (0.044623) 

θ3 0.2363191∗ 0.2275717∗ 0.04102855 0.0646104 

 (0.041042) (0.031425) (0.059307) (0.0646104) 

Covid-19 pandemic period 

Stock market index Ftse100 Cac40 Dax30 FtseMib40 

θ0 0.125099∗ 0.180715∗ 0.181150∗ 0.238831∗ 

θ1 
(0.002284) 

0.370981∗ 

(0.003588) 

0.452361∗ 

(0.003414) 

0.493653∗ 

(0.004241) 

0.424093∗ 

 (0.023231) (0.016854) (0.012565) (0.013684) 

θ2 0.037725 -0.043056 -0.155282∗ 0.006084 

θ3 
(0.045500) 
0.361818∗ 

(0.025749) 
0.308019∗ 

(0.037950) 
0.409326∗ 

(0.018063) 
0.252013∗ 

 (0.061569) (0.030807) (0.030329) (0.017776) 

 
A graphical inspection of the realized volatilities is provided by figures 9-12. On the other hand, figures 13 

and 14 summarize the character of the realized weekly volatility distributions estimated with the HAR-RV models 
for each stock market index in both periods. The right tail of the distributions is very thick in the Great Recession 
period without exception: this means that it has reached higher peaks more frequently confirming the greater 
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severity of the first crises compared to the pandemic. Furthermore, the peak of densities is, for all four indexes, 
more to the left in the pandemic period (less than 2%) than in the period of the Great Recession (above 2%). 

Figure 9: Weekly realized volatility estimated with the HAR-RV model. Ftse100 stock market for both periods 

RV of Ftse100: 01/01/2007 − 31/12/2009 

0 50 100 150 
 

RV of Ftse100: 01/01/2019 − 31/12/2021 

0 50 100 150 

2.6. Dependence structure among GARCH residuals 

A further interesting feature is the dependence structure among GARCH residuals to investigate how the 
correlation risk has changed between the two crises. In particular, we employ copula functions, which represent the 
joint distribution of a random vector given the marginal distributions (Nelsen, 1994; Cherubini et al., 2012) but, since 
in our application we work with time series, copula functions must be considered in their conditioned versions in 
the spirit of GARCH models. This extension was introduced and studied in Patton (2006a, 2006b). Therefore, 
assuming that the time series represent the log-returns of a set of n financial instruments at time t, e. g., (X1,t, ..., 
Xn,t)t, adapted to the filtration (Ft)t with Ft−1 - conditional marginal distributions G1,t, ..., Gn,t respectively, the Ft−1-
conditional joint distribution Ht of the vec- tor (X1,t, ..., Xn,t) can be expressed in terms of an Ft−1-conditional copula 
Ct: Ht(x1, ..., xn) = P (X1,t ≤ x1, ..., Xn,t ≤ xn) = Ct(G1,t(x1), ..., Gn,t(xn)), (x1, ..., xn) ∈ Rn. 

Figure 10: Weekly realized volatility estimated with the HAR-RV model. Cac40 stock market for both periods 

RV of Cac40: 01/01/2007 − 31/12/2009 

 0 50 100 150 
RV of Cac40: 01/01/2019 − 31/12/2021 
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Figure 11. Weekly realized volatility estimated with the HAR-RV model. Dax30 stock market for both periods 

RV of Dax30: 01/01/2007 − 31/12/2009 
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RV of Dax30: 01/01/2019 − 31/12/2021 
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Figure 12. Weekly realized volatility estimated with the HAR-RV model. FtseMib40 stock market for both periods 

RV of FtseMib40: 01/01/2007 − 31/12/2009 
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Figure 13. Comparison of distributions of weekly realized volatility within the two periods. Ftse100 (bottom) and Cac40 
(down) 

RV Ftse100, Great Recession RV Ftse100, Covid pandemic 
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Figure 14: Comparison of distributions of weekly realized volatility within the two periods. Dax30 (bottom) and FtseMib40 
(down) 

RV Dax30, Great Recession RV Dax30, Covid pandemic 
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The Copula function Ct is characterized by a functional form and a set of parameters. In this paper we 
estimate the dependence structure among residuals filtered by GARCH models selected by the estimation 
procedure. More formally, let (R1,t, R2,t, R3,t, R4,t)|Ft−1 be the vector of GARCH residuals be parameterized as 

Ht(Θ) = Ct (G1t(r1t; θ1), G2t(r2t; θ2), G3t(r3t; θ3), G4t(r4t; θ4); Θ)) , 

where Fit, i = 1, ..., 4, is the conditional cdf of residuals Rit of the marginal GARCH models selected in section 2.2., 
and Θ is the parameter (or vector of parameters) of the copula.  

The functional form of Ct is known and so the conditional multivariate density of (R1,t, R2,t, R3,t, R4,t) is given 
by: 

 ht(r1t, r2t, r3t, r4t; Θ) = =[∏ git(rit; θ̂i)
4
i=1 ]ct(G1t(r1t; θ̂1),G2t(r2t; θ̂2),G3t(r3t; θ̂3),G4t(r4t; θ̂4); Θ)) 

where git, i = 1, ..., 4, is the marginal density function of residuals and ct is the copula density.  

In particular, we use the two main elliptic copulas: the gaussian copula and the t-copula, considering that 
this is the most appropriate choice in the presence of market returns. Actually, in light of the literature on this topic 
the gaussian copula does not seem the best choice. In fact, many studies of equity returns have reported deviations 
from multivariate normality, in the form of asymmetric dependence. One example of asymmetric dependence is 
where two returns exhibit greater correlation during market declines than market upturns, as reported in Erb et al. 
(1994), Longin & Solnik (2001), and Ang & Chen (2002). Ribeiro & Veronesi (2002) suggest correlations between 
international stock markets increase during market downturns as a consequence of investors having greater 
uncertainty about the state of the economy. This is exactly the case under observation in this work. For 
completeness we report the density function of a gaussian copula associated to a random vector (X1, ..., Xn) is 
given by:  

cN(u1, … , un; Σ) =
1

[det(Σ)]
1
2

exp (−
1

2
uT(Σ−1 − I)u) 

where: u = (Ф−1(u1), ..., Ф−1(un)), Σ is the n × n correlation matrix, e.g., Σ= (ρij)i,j=1,...,d with ρii = 1 for all i and Ф −1· is 
the inverse cdf of standard univariate normal random variable. Notice that, in this case, the parameters are 
given by the correlation matrix Θ = Σ. 

The density function of a t-copula is given by: 

cT(u1, … , un; Σ, ν) =
1

[det(Σ)]
1
2

Γ(
ν+n

2
)

Γ(
ν

2
)
(

Γ(
ν

2
)

Γ(
ν+1

2
)
)

d
((1+ν−𝟏𝐮TΣ−1𝐮))

−
ν+n
2

∏ (1+
ui
2

ν
)

−
ν+1
2

d
i=1

, 

where: u = (t(ν)
−1(u1),… , t(ν)

−1(un))⁡and t(ν)
−1(. )⁡is the inverse cdf of a Student’s t random variable with ν degrees 

of freedom.  

Notice that, in this case, the parameters are given by the correlation matrix and the degrees of freedom 
parameter Θ = (Σ, ν). The t copula generalizes the gaussian copula by providing a non-zero dependence in extreme 
tails of the joint distribution. In particular, we can have an upper or a lower tail dependence as in Joe (2015). 
Suppose that returns of two market stock indexes exhibit a lower (upper) tail dependence: this implies a positive 
probability of observing an extremely large depreciation (appreciation) of the first index together with an extremely 
large depreciation (appreciation) of the second index. There exist two coefficients which measures lower or upper 
tail dependencies, τU and τL, whose computation depends on the copula characteristics we use. Being the t copula 
a symmetric copula, we have that τU = τL and we say that two variables exhibit a lower or upper tail dependence if 
τU, τL > 0. 

Observe that the use of copulas in constructing multivariate models allows for the partitioning of the 
parameter vector into elements relating only to a marginal distribution, and elements relating to the copula. In this 
direction we use a two-stage maximum likelihood estimator as in White (1994) and Patton (2006a). 

Tables 12 and Table 13 summarize the estimation results for both copulas. Al- though the values are high, 
a correlation risk behaviour can still be observed between the two periods. It is undoubtedly a fact that there is 
dependence in the tails and that the correlations, while remaining high, present significant differences. In fact, we 
can extract some indications about the two crises. (i) In both periods under observation the t-copula is the one that 
offers the best fit to the dependence structure among the stock market indexes, as evidenced by a higher likelihood 
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value. The parameter degrees of freedom, ν, is decidedly lower in the Great Recession period (5.831 against 
11.7955) and this is a clear signal of a greater severity of the tails of joint distribution during the Great Recession 
rather than in the Covid-19 pandemic period. (ii) A general decline in the correlations from the period of the Great 
Recession to the period of the Covid-19 pandemic is appreciated: in fact, the average coefficient is 0.9246 in the 
first period and 0.8591 in the second. This can be interpreted as a reduction in the risk of correlation in the pandemic 
period. The economic crises induced by the Great Recession was more invasive and showed greater 
interdependence between European economies, at least in terms of market indexes. (iii) As regards the reciprocal 
dependencies between the indexes, a very strong dependence is observed in the Cac40-Dax30 pair, while the 
least correlated pair is the Ftse100-FtseMib40. 

A further consideration concerns the tail dependence. There exists a link between the parameters ρ and ν 

of a bivariate t-copula and the tail dependence coefficients τ U and τ L is given by the following relationships:  τU =

τL = 2t(ν+1) (−√ν + 1√
1−ρ

1+ρ
), where t(ν+1) is the cdf of a Student’s t random variable with ν+1 degrees of 

freedom.  

Table 12. Estimation of the dependence structure given by a Gaussian Copula 

Great Recession period 
LogLik=2106 

Ftse100 Cac40 Dax30 FtseMib40 

Ftse100 
1 0.9317 0.8895 0.8658 

 (0.003467) (0.005617) (0.006587) 

Cac40 
- 1 0.9312 0.9081 

  (0.003506) (0.004652) 

Dax30 
- - 1 0.8553 

   (0.007210) 

FtseMib40 - - - 1 

Covid-19 pandemic period 
LogLik=1631 

Ftse100 Cac40 Dax30 FtseMib40 

Ftse100 
1 0.8684 0.8113 0.7946 

 (0.006747) (0.009818) (0.010111) 

Cac40 
- 1 0.9062 0.9010 

  (0.004824) (0.004995) 

Dax30 
- - 1 0.8583 

   (0.007152) 

FtseMib40 - - - 1 
 

In our case we can calculate the average tail dependence coefficient using the average value of the 
correlations among the market indexes in the two periods. Results are τU = τL = 0.6239 in the Great Recession 
period and τU = τL = 0.3445 in the Covid-19 period. This means that, on average, during the Great Recession period 
if the return of one market index takes an extreme value (positive or negative) there is about a 62% chance of the 
return of other market index taking an extreme value, whereas the same probability drops to about 34% during the 
Covid-19 pandemic period. 

Table 13. Estimation of the dependence structure given by a t-copula. 

Great Recession period 
LogLik=2217 ν: 5.8531 

Ftse100 Cac40 Dax30 FtseMib40 

Ftse100 
1 0.9336 0.8988 0.8800 

 (0.004065) (0.006156) (0.007083) 

Cac40 
- 1 0.9414 0.9139 

  (0.003595) (0.005274) 

Dax30 
- - 1 0.8797 

   (0.007645) 

FtseMib40 - - - 1 
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Covid-19 pandemic period 
LogLik=1648 ν: 11.7955 

Ftse100 Cac40 Dax30 FtseMib40 

Ftse100 
1 0.8704 0.8161 0.7971 

 (0.012612) (0.016684) (0.018047) 

Cac40 
- 1 0.9083 0.9017 

  (0.008261) (0.008805) 

Dax30 
- - 1 0.8611 

   (0.011397) 

FtseMib40 - - - 1 

Concluding remarks 

This paper analyses two major financial crises that have occurred in the last two decades from the stock 
market volatility point of view: the Great Recession of 2008 and the Covid-19 pandemic. The analysis is conducted 
using log- returns of market indexes relating to four European countries, Great Britain, France, Germany and Italy. 
Our approach is twofold. We analyse differences and similarities between the two crises through the daily 
conditional volatility estimated using some families of GARCH models and through the weekly realized variance 
estimated using HAR-RV models. Furthermore, the dependence structure among GARCH residuals is studied 
using copula functions in order to capture variations in terms of correlation risk in the two crises. From the volatility 
point of view, we observe that the estimates lean towards a greater persistence in the period of the Great Recession 
but with more important extreme peaks during the first phase of the pandemic. Although not clear-cut, some 
differences between the two crises can be glimpsed. The Great Recession was certainly deeper and more lasting 
than the pandemic and it was more expensive to overcome it. Probably, Central Bank intervention during the 
pandemic was prompter and more effective thanks to the lessons of the past. 
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