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continuously payable for all real values of s, thus generalizing annuity formulas like an and 
(Ia)n to the case where a payment of j−s is made at time j. Taking the limit n → ∞, the
annuities become perpetuities, and the present value formula for a zeta perpetuity-immediate 
coincides with the polylogarithm.
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Introduction

Mathematical jokes about analytic continuation often conflate values of the Riemann zeta 
function with divergent sums. For example, 1 + 1 + 1 + · · · is jokingly claimed to be 
ζ(0) = −1/2, and 1 + 2 + 3 + · · · is jokingly claimed to be ζ(−1) = −1/12. Another 
mathematical joke involves a lottery in which the prize is an infinite amount of money. When 
the winning ticket is drawn, the jubilant winner comes to claim his prize, and the mathemati-
cian who organized the lottery explains the mode of payment: “1 dollar now, 1/2 dollar next 
week, 1/3 dollar the week after that…” The joke here is that the harmonic series technically 
diverges but grows so slowly as to be insignificant in one’s lifetime.

If the weekly effective interest rate i is positive, the lottery prize thus described actually 
has finite value. The same can be said for 1 + 1 + 1 + · · · and 1 + 2 + 3 + · · · if the 
same mode of payment is used. Formulas for the present value of the latter two sums paid 
out as annuities-due are well known in the actuarial literature, namely as ä∞ = (1 + i)/i 
and (Iä)∞ = (1+ i)2/i2, respectively [1]. One might ask what is the present value of the 
harmonic series lottery prize or in general the value of 1 dollar paid now, 2−s dollars paid 
next week, 3−s dollars paid the week after that, etc. for some real number s. As we’ll show in 
this paper, the present value of such a zeta annuity can be determined using polylogarithms 
after expressing annuity formulas in terms of v = (1 + i)−1, a financial quantity known 
as a discount factor. More generally, in the case where the annuity is finite and ends with 
some final nth payment, the present value can be determined using fractional calculus after 
expressing annuity formulas in terms of δ = ln(1 + i), a financial quantity known as the 
force of interest.

1. Background

Let i > 0 be the periodic effective interest rate. Let v = (1 + i)−1 be the corresponding 
discount factor, and let d = i/(1+i) be the corresponding discount rate. Let δ = ln(1+i) 
be the corresponding force of interest.

1.1. Level Annuities

Definition 1.1.1. A level annuity-immediate makes a constant payment at the end of each 
of n units of time.

Lemma 1.1.2. The present value of a level annuity-immediate with each payment 1 is:

an =
1− vn

i
.
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Proof 1.1.3. Since 0 < v < 1 we may apply the formula for a geometric series:

an =
1

1 + i
+

(
1

1 + i

)2

+

(
1

1 + i

)3

+ · · ·+
(

1

1 + i

)n

= v + v2 + v3 + · · ·+ vn

= v · 1− vn

1− v

=
1− vn

i
,

where:
v

1− v
=

1

(1 + i)(1− v)
=

1

1 + i− (1 + i)v
=

1

1 + i− 1
=

1

i
.

Multiplying by (1 + i)n, we get the following corollary:

Corollary 1.1.4. The accumulated value of a level annuity-immediate at time n with each 
payment 1 is:

sn =
(1 + i)n − 1

i
.

Definition 1.1.5. A level annuity-due makes a constant payment at the beginning of each of 
n units of time.

Multiplying the formulas for level annuity-immediate by 1 + i and using the identity 
d = i/(1 + i), we get the corresponding formulas for level annuity-due:

Corollary 1.1.6. The present value of a level annuity-due with each payment 1 is:

än =
1− vn

d
.

Corollary 1.1.7. The accumulated value of a level annuity-due at time n with each payment 
1 is:

s̈n =
(1 + i)n − 1

d
.

Definition 1.1.8. A continuously payable level annuitymakes a uniform continuous payment
throughout each of n units of time.

Since the present value of a payment of 1 spread out over a unit of time is:∫ 1

0
e−δt dt = e−δt

−δ

∣∣∣∣1
0

=
1− e−δ

δ
=

1− (1 + i)−1

δ
=

d

δ
,

we can multiply the formulas for level annuity-due by d/δ and get the corresponding formulas 
for a continuously payable level annuity:
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Corollary 1.1.9. The present value of a continuously payable level annuity with each 
payment 1 is:

ān =
1− vn

δ
.

Corollary 1.1.10. The accumulated value of a continuously payable level annuity at time n 
with each payment 1 is:

s̄n =
(1 + i)n − 1

δ
.

1.2. Arithmetic Progression Annuities

Definition 1.2.1. An arithmetic progression annuity-immediate makes a payment at the end 
of each of n units of time following an arithmetic progression.

Lemma 1.2.2. The present value of an arithmetic progression annuity-immediate with pay-
ment j at time j for j ∈ {1, 2, 3, . . . , n} is:

(Ia)n =
än − nvn

i
.

Proof 1.2.3. Adding the present value of the individual payments, we get:

(Ia)n = v + 2v2 + 3v3 + · · ·+ (n− 1)vn−1 + nvn.

Multiplying by 1 + i, we get:

(1 + i)(Ia)n = 1 + 2v + 3v2 + · · ·+ (n− 1)vn−2 + nvn−1.

Subtracting, we get:

i(Ia)n = (1 + v + v2 + · · ·+ vn−1)− nvn = än − nvn.

Dividing by i, we get:
(Ia)n =

än − nvn

i
,

as desired.
Multiplying by (1 + i)n, we get the following corollary:

Corollary 1.2.4. The accumulated value of an arithmetic progression annuity-immediate at 
time n with payment j at time j for j ∈ {1, 2, 3, . . . , n} is:

(Is)n =
s̈n − n

i
.
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Definition 1.2.5. An arithmetic progression annuity-due makes a payment at the beginning 
of each of n units of time following an arithmetic progression.

Multiplying the formulas for arithmetic progression annuity-immediate by 1+i and using 
the identity d = i/(1 + i), we get the corresponding formulas for arithmetic progression 
annuity-due:
Corollary 1.2.6. The present value of an arithmetic progression annuity-due with payment j 
at time j − 1 for j ∈ {1, 2, 3, . . . , n} is:

(Iä)n =
än − nvn

d
.

Corollary 1.2.7. The accumulated value of an arithmetic progression annuity-due at time n 
with payment j at time j − 1 for j ∈ {1, 2, 3, . . . , n} is:

(Is̈)n =
s̈n − n

d
.

Definition 1.2.8. An continuously payable arithmetic progression annuity makes a uniform
continuous payment throughout each of n units of time following an arithmetic progression.

Since the present value of a payment of 1 spread out over a unit of time is:∫ 1

0
e−δt dt = e−δt

−δ

∣∣∣∣1
0

=
1− e−δ

δ
=

1− (1 + i)−1

δ
=

d

δ
,

we can multiply the formulas for arithmetic progression annuity-due by d/δ and get the 
corresponding formulas for a continuously payable arithmetic progression annuity:

Corollary 1.2.9. The present value of a continuously payable arithmetic progression annuity 
with payment j from time j − 1 to time j for j ∈ {1, 2, 3, . . . , n} is:

(Iā)n =
än − nvn

δ
.

Corollary 1.2.10. The accumulated value of a continuously payable arithmetic progression 
annuity at time n with payment j from time j − 1 to time j for j ∈ {1, 2, 3, . . . , n} is:

(Is̄)n =
s̈n − n

δ
.

2. Zeta Annuities

2.1. Integer Values of s
Definition 2.1.1. A Laurent polynomial progression annuity-immediate makes a payment at 
the end of each of n units of time following a Laurent polynomial progression.
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Theorem 2.1.2. Let s be an integer. The present value of a Laurent polynomial progression 
annuity-immediate with payment j−s at time j for j ∈ {1, 2, 3, . . . , n} is:

(ζ(s)a)n =

(
v
d

dv

)−s 1− vn

v−1 − 1
.

Note that: (ζ(0)a)n = an and (ζ(−1)a)n = (Ia)n . 

Proof 2.1.3. For the base case s = 0,

(ζ(0)a)n = an =
1− vn

i
=

1− vn

v−1 − 1
.

Suppose our formula holds for s = −k ≤ 0 where k is nonnegative. Then,(
v
d

dv

)k 1− vn

v−1 − 1
= (ζ(−k)a)n = v + 2kv2 + 3kv3 + · · ·+ nkvn.

Differentiating with respect to v and then multiplying by v gives us:(
v
d

dv

)k+1 1− vn

v−1 − 1
= v+ 2k+1v2 + 3k+1v3 + · · ·+ nk+1vn = (ζ(−k− 1)a)n ,

so induction is complete for nonpositive s.
Suppose our formula holds for s = k ≥ 0 where k is nonnegative. Then(
w

d

dw

)−k 1− wn

w−1 − 1
= (ζ(k)a)n = w + 2−kw2 + 3−kw3 + · · ·+ n−kwn.

Dividing by w and integrating with respect to w from w = 0 to w = v, we get:(
v
d

dv

)−k−1 1− vn

v−1 − 1
= v+2−k−1v2+3−k−1v3+· · ·+n−k−1vn = (ζ(k+1)a)n ,

so induction is complete for nonnegative s.

Multiplying by (1 + i)n = v−n, we get the following corollary:

Corollary 2.1.4. Let s be an integer. The accumulated value of a Laurent polynomial pro-
gression annuity-immediate at time n with payment j−s at time j for j ∈ {1, 2, 3, . . . , n}
is:

(ζ(s)S)n = v−n

(
v
d

dv

)−s 1− vn

v−1 − 1
.

Note that: (ζ(0)S)n = sn and (ζ(−1)S)n = (Is)n .
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Definition 2.1.5. A Laurent polynomial progression annuity-due makes a payment at the 
beginning of each of n units of time following a Laurent polynomial progression.

Multiplying the formulas for Laurent polynomial progression annuity-immediate by 1 + 
i = v−1, we get the corresponding formulas for Laurent polynomial progression annuity-
due:
Corollary 2.1.6. Let s be an integer. The present value of a Laurent polynomial progression 
annuity-due with payment j−s at time j − 1 for j ∈ {1, 2, 3, . . . , n} is:

(ζ(s)ä)n = v−1

(
v
d

dv

)−s 1− vn

v−1 − 1
.

Note that (ζ(0)ä)n = än and (ζ(−1)ä)n = (Iä)n .
Corollary 2.1.7. Let s be an integer. The accumulated value of a Laurent polynomial pro-
gression annuity-due at time n with payment j−s at time j − 1 for j ∈ {1, 2, 3, . . . , n}
is:

(ζ(s)s̈)n = v−n−1

(
v
d

dv

)−s 1− vn

v−1 − 1
.

Note that (ζ(0)s̈)n = s̈n and (ζ(−1)s̈)n = (Is̈)n .

Definition 2.1.8. An continuously payable Laurent polynomial progression annuity makes a 
uniform continuous payment throughout each of n units of time following a Laurent polyno-
mial progression.

Since the present value of a payment of 1 spread out over a unit of time is:∫ 1

0
e−δt dt = e−δt

−δ

∣∣∣∣1
0

=
1− e−δ

δ
=

1− (1 + i)−1

δ
=

1− v

ln v−1
=

v − 1

ln v
,

we can multiply the formulas for a Laurent polynomial progression annuity-due by (v − 
1)/ ln v and get the corresponding formulas for a continuously payable Laurent polynomial 
progression annuity:
Corollary 2.1.9. Let s be an integer. The present value of a continuously payable Lau-
rent polynomial progression annuity with payment j−s from time j − 1 to time j for j ∈ 
{1, 2, 3, . . . , n} is:

(ζ(s)ā)n =
1− v−1

ln v

(
v
d

dv

)−s 1− vn

v−1 − 1
.

Note that (ζ(0)ā)n = ān and (ζ(−1)ā)n = (Iā)n .
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Corollary 2.1.10. Let s be an integer. The accumulated value of a continuously payable 
Laurent polynomial progression annuity at time n with payment j−s from time j − 1 to 
time j for j ∈ {1, 2, 3, . . . , n} is:

(ζ(s)s̄)n = v−n 1− v−1

ln v

(
v
d

dv

)−s 1− vn

v−1 − 1
.

dv

Note that (ζ(0)s̄)n = s̄n and (ζ(−1)s̄)n = (Is̄)n .

2.2. Arbitrary Real Values of s with n Finite

To be able to apply the formulas derived in the previous section in the case where s is 
real but not an integer, it looks like we’ll need to do fractional calculus with powers of the 
operator v d . However, as we’ll see from a simple change of variables as done in [2], it’s
not necessary to look at fractional powers of a product of two noncommuting operators. If
we make the substitutions σj = − ln tj and δ = − ln v, we find that for any polynomial
function g : R → R passing through the origin,∫ v

0

1

t1

∫ t1

0
· · ·

∫ ts−1

0

1

ts
g(ts) dts · · · dt2 dt1 =

∫ ∞

δ

∫ ∞

σ1

· · ·
∫ ∞

σs−1

g(e−σs) dσs · · · dσ2 dσ1,

so if we express the annuity formulas in terms of δ, we just have to do fractional derivatives
and integrals, which are much easier and more well-known. To get started, we prove an
analog of a Cauchy formula for repeated integration:

Lemma 2.2.1. Let s be a positive integer and f : [a,∞) → R be a function for some
a > 0 such that, for all x ∈ [a,∞), f(x) < c exp(−λx) for some c, λ > 0. Then for
δ ≥ a, the integral(

− d

dδ

)−s

f(δ) =

∫ ∞

δ

∫ ∞

σ1

· · ·
∫ ∞

σs−1

f(σs) dσs · · · dσ2 dσ1

is given by: (
− d

dδ

)−s

f(δ) =
1

(s− 1)!

∫ ∞

δ
(t− δ)s−1f(t) dt.

Proof 2.2.2. The base case s = 1 follows from the fundamental theorem of calculus:

− d

dδ

∫ N

δ
f(t) dt = f(δ),

after taking the limitN → ∞. Suppose the lemma holds for s = k. By the Leibniz integral
rule, which holds by dominated convergence [3],

− d

dδ

[
1

k!

∫ ∞

δ
(t− δ)kf(t) dt

]
=

1

(k − 1)!

∫ ∞

δ
(t− δ)k−1f(t) dt.
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Applying the inductive hypothesis, we get:(
− d

dδ

)−k−1

f(δ) =

∫ ∞

δ

∫ ∞

σ1

· · ·
∫ ∞

σk

f(σk+1) dσk+1 · · · dσ2 dσ1

=

∫ ∞

δ

1

(k − 1)!

∫ ∞

δ
(t− δ)k−1f(t) dtdσ1

=

∫ ∞

δ

(
− d

dδ

)[
1

k!

∫ ∞

δ
(t− δ)kf(t) dt

]
dσ1

=
1

k!

∫ ∞

δ
(t− δ)kf(t) dt,

as desired.

Using the Gamma function Γ(s) = (s− 1)!, we can extend the above formula to real
values of s: (

− d

dδ

)−s

f(δ) =
1

Γ(s)

∫ ∞

δ
(t− δ)s−1f(t) dt.

For non-integer values of s, we can calculate the present and accumulated value of zeta 
annuities:

Corollary 2.2.3. Let 1 − k ≤ s < 2 − k where k is an integer. The present value of a zeta 
annuity-immediate with payment j−s at time j for j ∈ {1, . . . , n} is:

(ζ(s)a)n =

(
− d

dδ

)−s−k
[(

− d

dδ

)k (1− e−δn

eδ − 1

)]
.

(Note that: (ζ(0)a)n = an and (ζ(−1)a)n = (Ia)n .)

Example 2.2.4. Let δ = .05 and n = 5. The present value of a ζ(−1/2) (square root) 
annuity-immediate is

(ζ(−1/2)a)5 =

(
− d

dδ

)1/2−2
[(

− d

dδ

)2(1− e−5δ

eδ − 1

)]

=
1

Γ(3/2)

∫ ∞

.05
(t− .05)1/2

(
− d

dt

)2(1− e−5t

et − 1

)
dt

= 7.10057.

The result of the above numerical integration agrees with the sum:

e−.05
√
1 + e−.1

√
2 + e−.15

√
3 + e−.2

√
4 + e−.25

√
5

when input into a calculator.
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Multiplying by (1 + i)n = eδn, we get the following corollary:

Corollary 2.2.5. Let 1 − k ≤ s < 2 − k where k is an integer. The accumulated value of a 
zeta annuity-immediate at time n with payment j−s at time j for j ∈ {1, 2, 3, . . . , n} is:

(ζ(s)S)n = eδn
(
− d

dδ

)−s−k
[(

− d

dδ

)k (1− e−δn

eδ − 1

)]
.

(Note that (ζ(0)S)n = sn and (ζ(−1)S)n = (Is)n .)

Multiplying the formulas for zeta annuity-immediate by 1 + i = eδ , we get the corre-
sponding formulas for zeta annuity-due:

Corollary 2.2.6. Let 1 − k ≤ s < 2 − k where k is an integer. The present value of a zeta 
annuity-due with payment j−s at time j − 1 for j ∈ {1, . . . , n} is:

(ζ(s)ä)n = eδ
(
− d

dδ

)−s−k
[(

− d

dδ

)k (1− e−δn

eδ − 1

)]
.

(Note that (ζ(0)ä)n = än and (ζ(−1)ä)n = (Iä)n .)

Corollary 2.2.7. Let 1 − k ≤ s < 2 − k where k is an integer. The accumulated value of a 
zeta annuity-due at time n with payment j−s at time j − 1 for j ∈ {1, 2, 3, . . . , n} is:

(ζ(s)s̈)n = eδ(n+1)

(
− d

dδ

)−s−k
[(

− d

dδ

)k (1− e−δn

eδ − 1

)]
.

(Note that (ζ(0)s̈)n = s̈n and (ζ(−1)s̈)n = (Is̈)n .)

Since the present value of a payment of 1 spread out over a unit of time is:∫ 1

0
e−δt dt = e−δt

−δ

∣∣∣∣1
0

=
1− e−δ

δ
,

we can multiply the formulas for a zeta annuity-due by (1−e−δ)/δ and get the correspond-
ing formulas for a continuously payable zeta annuity:

Corollary 2.2.8. Let 1 − k ≤ s < 2 − k where k is an integer. The present value 
of a continuously payable zeta annuity with payment j−s from time j − 1 to time j for j ∈ 
{1, . . . , n} is:

(ζ(s)ā)n =
eδ − 1

δ

(
− d

dδ

)−s−k
[(

− d

dδ

)k (1− e−δn

eδ − 1

)]
.

(Note that (ζ(0)ā)n = ān and (ζ(−1)ā)n = (Iā)n .)
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Corollary 2.2.9. Let 1 − k ≤ s < 2 − k where k is an integer. The accumulated value of 
a continuously payable zeta annuity at time n with payment j−s from time j − 1 to time j 
for j ∈ {1, . . . , n} is:

(ζ(s)s̄)n =
eδ(n+1) − eδn

δ

(
− d

dδ

)−s−k
[(

− d

dδ

)k (1− e−δn

eδ − 1

)]
.

(Note that (ζ(0)s̄)n = s̄n and (ζ(−1)s̄)n = (Is̄)n .)

2.3. The case n → ∞

If we take the limit n → ∞, the annuity becomes a perpetuity, and the formula for the 
present value of a Laurent polynomial progression perpetuity-immediate coincides with the 
polylogarithm Lis(v), a well-known special function [4] defined for arbitrary real (and com-
plex values of s:
Corollary 2.3.1. Let s be a real number. The present value of a zeta perpetuity-immediate 
with payment j−s at time j for j ∈ N is:

(ζ(s)a)∞ = Lis(v).

(Note that (ζ(0)a)∞ = a∞ and (ζ(−1)a)∞ = (Ia)∞ .)

Multiplying the formula for zeta perpetuity-immediate by 1 + i = v−1, we get the 
corresponding formula for zeta perpetuity-due:
Corollary 2.3.2. Let s be a real number. The present value of a zeta perpetuity-due with 
payment j−s at time j − 1 for j ∈ N is:

(ζ(s)ä)∞ = v−1Lis(v).

(Note that (ζ(0)ä)∞ = ä∞ and (ζ(−1)ä)∞ = (Iä)∞ .)

Remark 2.3.3. The present value of the harmonic progression perpetuity-due described in 
the introduction is:

(ζ(1)ä)∞ = v−1Li1(v)
= −v−1 ln(1− v)

= (1 + i)(ln(1 + i)− ln i).

Since the present value of a payment of 1 spread out over a unit of time is:∫ 1

0
e−δt dt = e−δt

−δ

∣∣∣∣1
0

=
1− e−δ

δ
=

1− (1 + i)−1

δ
=

1− v

ln v−1
=

v − 1

ln v
,

we can multiply the formula for a zeta perpetuity-due by (v − 1)/ ln v and get the corre-
sponding formula for a continuously payable zeta perpetuity:
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Corollary 2.3.4. Let s be a real number. The present value of a continuously payable zeta 
perpetuity with payment j−s from time j − 1 to time j for j ∈ N is:

1 v−1

(ζ(s)ā)∞ =
−
ln v 

Lis(v).

(Note that (ζ(0)ā)∞ = ā∞ and (ζ(−1)ā)∞ = (Iā)∞ .)

Conclusion

We have derived the present value and accumulated value formulas for zeta annuities-
immediate, due, and continuously payable for all real values of s. Taking the limit n → ∞, 
the annuities become perpetuities, and the present value formula for a zeta perpetuity-
immediate coincides with the polylogarithm.

Since these formulas generalize an and (Ia)n to the case where a payment of j−s is 
made at time j, zeta annuities have potential use when balancing out the advantages and 
disadvantages of level and variable annuities. A life insurance company may want to sell a 
variable annuity product that has less upfront cost than (Ia)n yet makes steadily increasing 
payments that keep up better with inflation than a level annuity. For this purpose, one could 
use zeta annuities where s is between −1 and 0, like the square root annuity (s = −1/2) 
mentioned in Example 2.2.4.
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