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Abstract: 

According to the Treaty on European Union, the composition of the European Parliament must be degressively 

proportional with respect to the population size of the individual Member States of the European Union. The reference point is 

always the population data from the year preceding the elections for the five-year parliamentary term. During the term, 

however, population sizes may change, which can lead to a violation of the principle of degressive proportionality. In this 

paper, the concept of demographic stability of a degressively proportional allocation rule is defined, and based on this 

definition, a coefficient is constructed whose maximisation leads to the identification of allocations that are stable in the sense 

defined above. A rule based on this maximization has been empirically verified using data from the 2024 – 2029 parliamentary 

term and changes in population size that occurred by 2025. The verification confirmed the high effectiveness of this rule in 

preserving the property of degressive proportionality. 
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Introduction  

In the context of fair distribution of goods and entitlements, a fundamental principle of allocation was shaped 

as early as antiquity. The principle of proportional allocation, proportional to the value of all agents participating in 

the distribution, became undisputed. In Aristotle’s Nicomachean Ethics, one can find a formulation of this principle, 

namely the assertion that justice is something proportional, followed by the clarification that everyone agrees that 

a just distribution should be carried out based on some value, although not everyone agrees on what that value 

should be. 

According to Aristotle, the construction of a fair distribution is therefore simple. First, one must determine 

the values of the agents that is, numerically define their entitlements to a share of the good and then allocate 

proportionally to those values. These values are, of course, understood numerically and are almost always non-

negative numbers. Aristotle himself pointed out the first obvious problem with this reasoning: there are no objective 

guidelines on how to determine the values of agents. Egalitarians will point to equal values, electoral system 

designers to the population sizes of individual electoral districts, and authors of prize distribution rules in sports or 
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artistic competitions to parameters describing the merits of the participants. In particular, under the winner-takes-

all principle, the only positive value may turn out to be that of the winner. 

The second problem is the durability of the principle over time. This issue does not arise in the case of one-

off distributions or when the agents' values do not change over time. The former occurs, for instance, in the 

distribution of a one-time annual financial bonus among organizational units of a company, proportionally to the 

profits generated by each unit during that year. Annual profits may change year by year, but the distribution 

concerns only a one-off event and refers to a single moment in time. Unchanging agent values are characteristic, 

for example, in the case of prize distribution in tennis tournaments. The proportional shares of the total prize pool 

allocated to players in a given tournament are determined once over many years and depend solely on performance 

in that tournament most commonly the stage reached, especially when the tournament uses a knockout format. 

The durability of the principle, however, becomes relevant when the effects of a given distribution are spread 

over time. A classic example is the allocation of seats in the European Parliament among EU Member States. The 

allocation is made based on the population data from the year preceding the start of the term, but it remains in 

effect, despite demographic changes, for the subsequent five years. 

The problem of the durability of an allocation principle, from the perspective of proportionality relative to 

entitlement values, has a trivial solution: without any additional assumptions, no allocation proportional to changing 

entitlements is stable. Only a proportional change in all values does not affect the allocation outcome. In all other 

cases, any change in entitlements leads to changes in the quantity of goods allocated. Therefore, in the context of 

stability, only allocation rules that permit deviations from strict proportionality lend themselves to meaningful 

analysis. Such rules include the classical methods applied to the apportionment problem, as well as the 

degressively proportional rule for allocating seats among Member States in the European Parliament. 

The apportionment problem has been known for many years, and many of its aspects have been thoroughly 

described in the academic literature (Balinski & Young, 2001; Palomares at al., 2024; Pukelsheim, 2014; Young, 

1995). Practically an undisputed principle of allocation is its proportionality with respect to the level of support for 

political parties or the population size of electoral districts. Departures from strict proportionality are necessary in 

this context due to the need to produce integer allocations. The goods being distributed, seats in representative 

bodies, are indivisible, and therefore, it is generally not possible to adhere strictly to the proportionality principle. Its 

numerical realization takes the form of the so-called quota sequence of proportional division, and the actual 

allocation is an integer approximation of this sequence. The goal is to compute a sequence of natural numbers that 

approximate the exact proportional shares. 

Among the methods used to derive such integer allocations, two main categories stand out: quota methods 

(Balinski & Young, 1975) and divisor methods (Balinski & Young, 1978; Lyu & Zhao, 2023). In practical applications, 

divisor methods are more commonly used. These methods have also been the subject of attempts to analyse their 

demographic stability, since the models assume that the sequence of entitlements determining the allocation 

corresponds to the population sizes of individual electoral districts. The results obtained identified the range of 

possible changes in population size that, under three classical rounding methods, rounding up, rounding down, and 

rounding to the nearest integer, do not necessitate a change in allocation for the following electoral term. Thus, the 

maximum range of demographic changes was defined, within which the allocation established at the beginning of 

an elected body’s term continues to satisfy the proportionality principle (as modified by the specific divisor method) 

throughout the entire term. There are no studies in the literature addressing the stability of quota methods. 

The principle of degressive proportionality, discussed in more detail in the following section and applied in 

the allocation of seats in the European Parliament, allows for significant deviations from proportionality. This makes 

the issue of demographic stability more interesting than in the case of proportional methods from the apportionment 

problem group. A degressively proportional allocation may be equal, where each Member State receives the same 

number of seats regardless of population or proportional, subject to rounding, to population size. 
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This wide range of possibilities means that, for the 2024 – 2029 term, there are over 800 million allocations 

that comply with the legal provisions. On one hand, this presents a selection problem; on the other, it enables 

negotiation and the application of various optimization criteria. One such criterion may be demographic stability of 

the allocation, understood as maintaining the conditions of degressive proportionality for as long as possible despite 

year-to-year changes in population. 

This is particularly relevant because, until the last elections for the 2024 – 2029 term, no repeatable formula 

for determining the composition of the European Parliament was accepted. Each time, the composition is 

established through negotiations, and one of the key principles followed by the Committee on Constitutional Affairs 

when formulating its proposals is to make as few changes as possible to the current composition. Demographic 

stability as an allocation criterion is therefore consistent with the practice currently in place. 

It should be emphasized that the most demographically stable degressively proportional allocation is, of 

course, the equal allocation. It is independent of population size and thus complies with the degressive 

proportionality conditions regardless of the scale of demographic changes. However, it cannot be applied in practice 

when shaping the composition of the European Parliament due to the boundary conditions specified in the Treaty 

on European Union, which require differentiation between the number of seats allocated to Germany and Malta, 

that is, to the most and least populous Member States of the Union. 

In the present study, the concept of demographic stability of a degressively proportional allocation and 

allocation rule is first formally defined. Next, a method for measuring such stability is proposed through the 

introduction of appropriate demographic stability coefficients. In the applied part of the paper, these coefficients are 

used both as an optimization criterion for the allocation of seats in the European Parliament and as a criterion for 

adjusting the current composition of the chamber. In the first case, by maximizing the demographic stability index 

of the degressively proportional rule, an allocation is selected, among all legally permissible solutions, that is most 

demographically stable according to the defined criterion. In the second case, a sequential correction is applied to 

the allocation valid for the 2024–2029 term to obtain an allocation with the property that no single-seat transfer 

between any two countries would increase its demographic stability coefficient. 

1. Research Background 

The degressively proportional allocation of seats in the European Parliament is a relatively new problem. It 

emerged with the entry into force of the Treaty on European Union, which introduced degressive proportionality as 

the guiding principle for structuring this body. 

Article 14(2) of the Treaty on European Union states: “The European Parliament shall be composed of 

representatives of the Union’s citizens. They shall not exceed seven hundred and fifty in number, plus the President. 

Representation of citizens shall be degressively proportional, with a minimum threshold of six members per Member 

State. No Member State shall be allocated more than ninety-six seats”. 

Additionally, Article 1 of European Council Decision 2023/2061 defines degressive proportionality as follows: 

“Degressive proportionality is defined as follows: the ratio between the population and the number of seats of each 

Member State before rounding up or down to the nearest whole number is to vary in relation to their respective 

populations in such a way that each Member of the European Parliament from a more populous Member State 

represents more citizens than each Member of the European Parliament from a less populous Member State and, 

conversely, that the larger the population of a Member State, the greater its entitlement to a large number of seats 

in the European Parliament”. 

Despite the fact that the Treaty on European Union has been in force for over a decade, no mathematical 

formula has yet been approved for allocating seats among Member States of the European Parliament. Article 

14(2), which governs this issue, is sufficiently general to allow for many allocations that comply with its provisions, 

but none of the proposed models has been legally adopted as a definitive solution. Recognizing the importance of 

establishing a reproducible mathematical formula for determining the Parliament’s composition, the Committee on 

Constitutional Affairs has organized academic symposia dedicated to this topic. One special issue of the journal 
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Mathematical Social Sciences was entirely devoted to the problems associated with degressive proportionality. 

However, no consensus was reached that could serve as a legally accepted formula, and the proposed composition 

of the chamber remains a result of negotiations that adjust the previously adopted allocation. As a result, the 

question of how to systematically determine the composition of the European Parliament remains open. 

Among the methods presented in the literature, the largest group consists of adaptations of well-known 

apportionment rules used for proportional allocation (Cegiełka & Łyko, 2014; Charvát, 2024; Dniestrzański, 2014; 

Haman, 2017; Martínez-Aroza & Ramírez-González, 2008; Pukelsheim, 2010; Ramírez-González, 2012; 

Słomczyński & Życzkowski, 2012). This is a natural approach, considering the electoral nature of the problem. The 

rules belonging to this group, most notably the Cambridge Compromise and the Power Compromise, came closest 

to being legally adopted and are widely recognized as the most practically relevant proposals. In addition, there 

have been attempts to address the problem using numerical methods and optimization techniques (Cegiełka et al., 

2019, 2021a, 2021b; Cegiełka et al., 2025; Florek, 2012; Łyko et al., 2025; Łyko & Rudek, 2017; Serafini, 2012). 

Within the latter group, special attention should be given to the paper (Łyko & Rudek, 2013) where the LaRsa 

algorithm which identifies the entire set of all permissible allocations was presented. This opens the door to any 

kind of minimization or maximization analysis based on a defined objective function. 

The LaRsa algorithm is employed in the applied section of this article to generate all possible allocations for 

the 2024 – 2029 term. From this set, the allocation that maximizes the demographic stability index of a degressively 

proportional rule is selected. This construction leads to the proposal of a new rule for shaping the composition of 

the European Parliament, based on the previously unused criterion of demographic stability. Additionally, in line 

with the current practice of determining the composition through negotiation, a proposal is also made to adjust the 

current allocation in a way that ensures the highest possible demographic stability under the given constraints. 

2. Research Methodology 

An allocation problem is defined as a pair (𝑝, ℎ), where 𝑝 = (𝑝1, 𝑝2, … , 𝑝𝑛), 𝑝𝑖 > 0, is a sequence of 

agents’ entitlements, and ℎ > 0 is the number of goods to be distributed among them. For a given allocation 

problem (𝑝, ℎ), an allocation is defined as a positive sequence 𝑠 = (𝑠1, 𝑠2, … , 𝑠𝑛) such that ∑ 𝑠𝑖
∞
𝑖=1 = ℎ. In the 

case of the allocation of seats in the European Parliament, the sequence 𝑝 represents the population sizes of the 

Member States, the sequence 𝑠 represents the number of seats allocated to them, and ℎ is the total number of 

seats. The set of all allocations for a problem (𝑝, ℎ) will be denoted by 𝐴(𝑝,ℎ). 

An allocation rule is understood as any function that assigns to an allocation problem (𝑝, ℎ) a subset 

𝐴𝑅(𝑝,ℎ) of the set 𝐴(𝑝,ℎ)of all allocations for that problem, i.e., a function: 

𝑅: ℝ+
𝑛 × ℝ+ → 2ℝ+

𝑛
. 

If the set 𝐴𝑅(𝑝,ℎ) is a singleton, the allocation rule is called deterministic. An example of a deterministic 

allocation rule is the equal division rule 𝑅𝐸 , according to which each agent receives the same amount of the good. 

Another important example of a deterministic rule is the proportional allocation rule 𝑅𝑃 , in which the allocation is 

proportional to the entitlements, i.e., 𝑠𝑖 =
ℎ𝑝𝑖

∑ 𝑝𝑖
𝑛
𝑖=1

. In full generality, the degressively proportional allocation rule 

used in the distribution of seats in the European Parliament is not deterministic. 

An integer allocation 𝑠 = (𝑠1, 𝑠2, … , 𝑠𝑛) is degressively proportional with respect to a non-increasing 

sequence of entitlements 𝑝 = (𝑝1, 𝑝2, … , 𝑝𝑛) if and only if, for every 𝑖 ∈ {1,2, … , 𝑛 − 1}, 

𝑠𝑖 ≥ 𝑠𝑖+1,                (1) 

𝑠𝑖

𝑝𝑖
≤

𝑠𝑖+1

𝑝𝑖+1
.                (2)  
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An allocation rule 𝑅(𝑝, ℎ) is said to be degressively proportional with respect to 𝑝 if every allocation 

𝑠 ∈ 𝐴𝑅(𝒑,ℎ) is degressively proportional with respect to 𝑝. 

The concept of degressively proportional allocation is relative, as it depends on the population sequence 

and therefore refers to a specific point in time, namely the moment at which population data is obtained. The above 

conditions (1) and (2) are verified based on that data. However, population sizes may change over time, and as a 

result, inequalities (1) and (2) may no longer hold for updated values. In particular, an allocation that is degressively 

proportional with respect to the population sequence measured at the beginning of a parliamentary term may not 

remain so with respect to the population at the end of that term. From a formal standpoint, during the term of the 

European Parliament, its composition may thus fail to comply with the principle expressed in Article 14(2) of the 

Treaty on European Union. Hence the idea of considering demographic stability over time in the context of 

degressively proportional allocation (DP demographic stability), where stability is understood as the preservation 

of conditions (1) and (2) throughout the entire period under analysis. 

Let [𝑡1, 𝑡2], with 𝑡1 < 𝑡2, be any time interval, and let 𝑡 ∈ [𝑡1, 𝑡2]. Let 𝑝𝑡 = (𝑝1
𝑡 , 𝑝2

𝑡 , … , 𝑝𝑛
𝑡 ) denote a 

non-increasing sequence representing the population sizes at time 𝑡. 

Definition 1. An allocation 𝑠 = (𝑠1, 𝑠2, … , 𝑠𝑛) is DP demographically stable over the period [𝑡1, 𝑡2] if and 

only if, for every 𝑡 ∈ [𝑡1, 𝑡2], the allocation 𝑠 is degressively proportional with respect to the 

non-increasing population sequence 𝑝𝑡 = (𝑝1
𝑡 , 𝑝2

𝑡 , … , 𝑝𝑛
𝑡 ). 

Definition 2. An allocation rule 𝑅(𝑝, ℎ) is DP demographically stable over the period [𝑡1, 𝑡2] if and only if 

there exists an allocation 𝑠 ∈ 𝐴𝑅(𝑝,ℎ) such that for every 𝑡 ∈ [𝑡1, 𝑡2], 𝑠 is degressively 

proportional with respect to the non-increasing population sequence 𝑝𝑡 = (𝑝1
𝑡 , 𝑝2

𝑡 , … , 𝑝𝑛
𝑡 ). 

In the following sections, only DP demographic stability will be considered and will be referred to simply as 

demographic stability or stability. 

From a practical perspective, the most relevant case is the demographic stability of an allocation during a 

single parliamentary term, that is, when 𝑡1 and 𝑡2 mark the beginning and end of the term, respectively. In the 

practice of determining the composition of the European Parliament, especially given the frequently emphasized 

need to preserve the status quo, meaning to minimize seat changes between successive terms, demographic 

stability also acquires an intertemporal dimension. It is important to note that the empirical verification of 

demographic stability is significantly constrained by the lack of continuous population measurement. Since such 

data is recorded at discrete intervals, the practical feasibility of analysing demographic stability depends on 

the frequency of updates to the sequence 𝑝𝑡. 

For the first time, the issue of demographic stability of a degressively proportional allocation was considered 

in the work by (Dniestrzański et al., 2013). Starting from condition (2) in Definition 1, i.e., the inequality 
𝑠𝑖

𝑝𝑖
≤

𝑠𝑖+1

𝑝𝑖+1
, 

the authors justified that for all degressively proportional allocations and for every 𝑖 ∈ {1,2, … , 𝑛 − 1}, the 

following inequalities hold 0 ≤
𝑝𝑖+1𝑠𝑖

𝑝𝑖𝑠𝑖+1
≤ 1. Demographic stability of an allocation means these inequalities are 

satisfied for all 𝑛 − 1 pairs of agents 𝑖 and 𝑖 + 1. If 𝑠𝑖 = 𝑠𝑖+1, then inequalities (1) and (2) are fulfilled for any 

values such that 𝑝𝑖 ≤ 𝑝𝑖+1, which means that such pairs do not affect the demographic stability of the allocation. 

Consequently, only those pairs where 𝑠𝑖 ≥ 𝑠𝑖+1 are relevant. Since the stability of an allocation 𝒔 implies stability 

for all such agent pairs, one can modify the idea from the cited work and first define for any allocation 𝑠 =

(𝑠1, 𝑠2, … , 𝑠𝑛), which is degressively proportional with respect to the non-increasing sequence of populations 𝑝 =

(𝑝1, 𝑝2, … , 𝑝𝑛) a sequence 𝑟 = (𝑟1, 𝑟2, … , 𝑟𝑛−1) that represents the degree of fulfilment of inequalities (1) and 

(2) for each consecutive pair of agents 𝑖 and 𝑖 + 1: 
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𝑟𝑖 = {
1, for  𝑠𝑖 = 𝑠𝑖+1 

1 −
𝑝𝑖+1𝑠𝑖

𝑝𝑖𝑠𝑖+1
, for  𝑠𝑖 ≠ 𝑠𝑖+1

.              (3) 

Then, the demographic stability coefficient of allocation 𝑠 is defined as: 

𝑆𝑇𝐷𝒔 = min
𝑖∈{1,2,…,𝑛−1}

𝑟𝑖.               (4) 

Between two allocations, the one with the higher 𝑆𝑇𝐷𝒔 is considered more demographically stable. 

Looking at the problem more broadly, one can also evaluate the demographic stability of an allocation rule 

𝑅(𝑝, ℎ), defining its measure as: 

𝑆𝑇𝐷𝑅(𝒑,ℎ) = max
𝑠∈𝐴𝑅(𝒑,ℎ)

𝑆𝑇𝐷𝒔.              (5) 

If 𝑅𝑃(𝑝, ℎ) is the proportional allocation rule with respect to sequence 𝑝, then 
𝑝𝑖+1𝑠𝑖

𝑝𝑖𝑠𝑖+1
= 1 and hence 

𝑆𝑇𝐷𝑅𝑃(𝒑,ℎ) = 0. In the case of the equal allocation rule 𝑅𝐸(𝑝, ℎ), we have 𝑆𝑇𝐷𝑅𝐸(𝒑,ℎ) = 1. From the definition 

of degressively proportional allocation, it follows that 0 ≤
𝑝𝑖+1𝑠𝑖

𝑝𝑖𝑠𝑖+1
≤ 1, which means that for any degressively 

proportional allocation rule 𝑅(𝑝, ℎ), the following inequalities hold: 

0 = 𝑆𝑇𝐷𝑅𝑃(𝒑,ℎ) ≤ 𝑆𝑇𝐷𝑅(𝒑,ℎ) ≤ 𝑆𝑇𝐷𝑅𝐸(𝒑,ℎ) = 1.           (6) 

Thus, it is evident that the equal allocation rule is the most demographically stable. No change in population 

can make it lose its degressive proportionality. On the opposite end, the proportional allocation rule is the least 

stable, even the slightest change in population renders the allocation no longer degressively proportional. If one 

aims to ensure long-term robustness of the allocation, then between two candidate rules, the one with the higher 

𝑆𝑇𝐷𝑅(𝒑,ℎ) should be chosen. 

3. Case Studies 

To illustrate the issue, two practical tasks related to shaping the composition of the European Parliament 

were considered: 

Maximizing Demographic Stability 

In the first task, based on the population figures used by the Committee on Constitutional Affairs to 

determine the 2024 – 2029 composition, a degressively proportional allocation was found that maximized the 

demographic stability coefficient 𝑆𝑇𝐷𝒔 in lexicographic order. To do this, the LaRsa algorithm was implemented, 

which identified all 874,025,775 degressively proportional allocations of 720 seats under the constraints 𝑠1 = 96 

and 𝑠27 = 6. These constraints match the total number of seats and the boundary conditions used for the official 

allocation of the current term.  

From this set, 42 allocations were selected with the highest demographic stability coefficient 𝑆𝑇𝐷𝒔 =

0.04540513703469362. In all these 42 allocations, 15 countries received the same number of seats across all 

solutions, while the number of seats for the remaining countries varied between 2 and 4 mandates. These values 

are presented in the column “Max 𝑆𝑇𝐷𝒔 Allocations” of Table 1. 

In the next steps, this set of 42 allocations was narrowed down by choosing those allocations where the 

next value in the sequence 𝒓 was the largest. After 9 iterations, a final allocation was selected, which is presented 

in column “Lex Max 𝑆𝑇𝐷𝒔 Allocation” of Table 1. 
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Improving Allocation Through Seat Transfers 

In the second task, the starting point was the current allocation 𝑠2024, for which the demographic stability 

coefficient was computed as 𝑆𝑇𝐷𝒔𝟐𝟎𝟐𝟒 = 0.00244339. Next, one-seat transfers between countries were 

considered, with the goal of producing a degressively proportional allocation (respecting the constraints 𝑠1 = 96, 

𝑠27 = 6) with a higher demographic stability coefficient. This one-seat transfer procedure was continued as long 

as a transfer existed that improved the value of 𝑆𝑇𝐷𝒔. After three transfers, a final allocation was reached, 

presented in column “Seat Transfer Allocation”, with the property that no further one-seat shift between any two 

countries would increase the allocation’s demographic stability. 

Table 1. Demographic stability of the allocation in the 10th term of the European Parliament 

Countries Population 2023 
Seats 

2024-2029 

Max STDs 

Allocations 

Lex Max STDs 

Allocation 

Seat Transfer 

Allocation 
Population 2025 

Germany 83,203,320 96 96 96 96 83,577,140 

France 67,842,582 81 82 82 82 68,635,943 

Italy 59,607,184 76 76 76 75 58,934,177 

Spain 47,432,805 61 64 64 62 49,077,984 

Poland 37,654,247 53 54 54 53 36,497,495 

Romania 19,038,098 33 29 29 32 19,036,031 

Netherlands 17,734,036 31 29 29 31 18,044,027 

Belgium 11,631,136 22 20 20 22 11,900,123 

Greece 10,603,810 21 20 20 21 10,409,547 

Czech Republic 10,545,457 21 20 20 21 10,909,500 

Sweden 10,440,000 21 20 20 21 10,587,710 

Portugal 10,352,042 21 20 20 21 10,749,635 

Hungary 9,689,010 21 20 20 21 9,539,502 

Austria 8,967,500 20 20 20 20 9,197,213 

Bulgaria 6,838,937 17 16,17 17 16 6,437,360 

Denmark 5,864,667 15 15,16 16 15 5,992,734 

Finland 5,541,241 15 15,16 16 15 5,635,971 

Slovakia 5,434,712 15 15,16 16 15 5,419,451 

Ireland 5,060,004 14 15,16 16 15 5,439,898 

Croatia 3,862,305 12 12,13,14,15 14 12 3,874,350 

Lithuania 2,805,998 11 10,11,12 11 11 2,890,664 

Slovenia 2,107,180 9 9,10,11 9 9 2,130,850 

Latvia 1,875,757 9 9,10,11 9 9 1,856,932 

Estonia 1,331,796 7 7,8,9,10 8 7 1,369,995 

Cyprus 904,700 6 6,7,8,9 6 6 979,865 

Luxembourg 643,648 6 6,7 6 6 681,973 
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Countries Population 2023 
Seats 

2024-2029 

Max STDs 

Allocations 

Lex Max STDs 

Allocation 

Seat Transfer 

Allocation 
Population 2025 

Malta 520,971 6 6 6 6 574,250 

Source: EUR-Lex, Eurostat 

Conclusion 

The composition of the European Parliament is determined based on population data from the year 

preceding the start of a new term. According to the Treaty on European Union, this allocation must be degressively 

proportional with respect to the population figures of the Member States. Since each parliamentary term lasts five 

years, population changes during the term may cause the condition of degressive proportionality to no longer hold. 

This raises the question of how to design the allocation so that the condition remains satisfied for as long as 

possible. 

In the absence of a clear, legally approved rule for determining the composition of the European Parliament, 

the demographic stability coefficient presented in this study may serve as a criterion for shaping the chamber. This 

paper illustrates its application using the case of the 2024–2029 term, comparing the resulting allocations with 

updated population data from the year 2025. 

The current allocation is no longer degressively proportional with respect to the 2025 population figures. 

This condition is violated for five pairs of countries, highlighted in bold in the relevant table. The correction proposed 

in the previous section, which involved just three seat transfers, is insufficient to fix the violations for all five pairs. 

However, it is worth noting that after the correction, the degressive proportionality condition is violated for only two 

pairs, indicating the effectiveness of each individual transfer. 

The conclusions are significantly different when the maximization of the demographic stability coefficient is 

used as the primary criterion from the outset. All 42 allocations identified using this method remained degressively 

proportional also with respect to the 2025 population data. This is a very strong result, especially considering that, 

out of the initial 874,025,775 admissible allocations at the start of the term, only 16,956,362 i.e., about 1.94% 

maintained degressive proportionality by 2025. This outcome confirms the effectiveness of the proposed criterion 

and justifies further research in this area. 
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