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Abstract  

This study examines the dynamic, asymmetric influence of macroeconomic and policy uncertainty on the NASDAQ 

Clean Edge Green Energy Index (CELS), a key benchmark for US renewable energy stocks. Using monthly data from January 

2008 to June 2025 and employing an Autoregressive Distributed Lag (ARDL) model with bounds testing, we confirm a 

significant and stable long-run cointegrating relationship. Our primary contribution is the clear delineation of effects across time 

horizons. In the short run, the CELS index is highly responsive to immediate shocks, particularly those originating from the 

Volatility Index (VIX) and Brent crude oil prices.  

However, in the long run, the most dominant and persistent negative influence stems from the US Climate Policy 

Uncertainty Index. This finding suggests that while investors tolerate short-term macroeconomic volatility, sustained ambiguity 

regarding federal energy policy significantly depresses the long-term value of clean energy assets. We provide actionable, 

evidence-based guidance for policymakers, recommending the implementation of durable, cross-cycle mechanisms (such as 

guaranteed pricing or consistent regulatory standards) to mitigate long-term uncertainty and stabilise capital flows into the 

clean energy transition. The results also offer clear strategies for asset managers seeking to hedge against specific 

macroeconomic and policy risks in the green energy sector. 

Keywords: renewable energy stocks; policy uncertainty; exchange rates; treasury yields; volatility index (vix); green energy. 

JEL Code: Q40, Q42, Q54, G12, G15, C22. 

Introduction 

The transition toward sustainable energy systems represents one of the most critical economic and 

technological shifts of the twenty-first century. As global governments commit to decarbonization targets, 

investment in clean and renewable energy technology has grown exponentially, positioning the Clean Edge Green 

Energy Index (CELS) as an important barometer for market confidence in this sector (IEA, 2025; OECD/IEA, 2024).  
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However, the unique nature of clean energy assets, characterized by high capital intensity, reliance on long-

term policy contracts, and inherent exposure to political and regulatory risk, makes them acutely sensitive to various 

forms of macroeconomic and policy uncertainty (Sadorsky, 2012; Lyócsa & Todorova, 2024; Pham et al., 2025). 

This vulnerability introduces systematic risk, potentially hindering the efficient allocation of capital necessary to 

achieve climate goals (Calcaterra et al., 2024; Gordo et al., 2024). 

This paper addresses an essential gap in the literature by rigorously analysing the differential impacts of 

various uncertainty measures, specifically policy-driven uncertainty and macroeconomic volatility, on the CELS 

index across both the short and long run. While prior research has broadly established the link between uncertainty 

and asset pricing (Zaier et al., 2024; Bouri et al., 2025), there remains insufficient evidence to guide policymakers 

and investors on which type of uncertainty poses the most persistent threat to the financial viability of the green 

energy sector. Furthermore, clean energy markets are distinct from general equity markets: their returns are not 

only influenced by traditional financial variables such as interest rates and exchange rates (Kocaarslan & Soytas, 

2019) but are critically shaped by regulatory stability and geopolitical commitment to climate mandates (Gavriilidis, 

2021; Islam et al., 2023; Ghosh, 2022). 

To capture these dynamics, we utilize the Autoregressive Distributed Lag (ARDL) model on monthly data 

spanning 2008–2025. The ARDL methodology is instrumental because it allows us to formally test for cointegration 

and simultaneously estimate both short-run adjustment mechanisms and long-run equilibrium relationships 

(Pesaran, Shin, & Smith, 2001). This approach is methodologically superior to single-equation models that fail to 

distinguish the transient noise of macroeconomic shocks from the lasting structural damage caused by sustained 

policy ambiguity (Wang et al., 2025; Yuen & Yuen, 2024). Our explanatory variables include the US Climate Policy 

Uncertainty (CPU) Index, the Global Policy Uncertainty (GPU) Index, Brent crude oil prices, the BIS Broad Dollar 

Index, the 10-year Treasury yield, and the Volatility Index (VIX), consistent with prior research (Gordo et al., 2024). 

Our empirical findings reveal a strong, stable long-run relationship among these variables. The main 

economic contribution of this study lies in demonstrating that short-run volatility is primarily driven by traditional 

financial variables such as market volatility (VIX) and oil prices (Dawar et al., 2021), which impact liquidity and 

immediate market sentiment. In contrast, the long-run valuation of the CELS index is overwhelmingly determined 

by policy uncertainty (Li et al., 2025; Zaier et al., 2024). We show that sustained, high levels of US climate policy 

ambiguity result in a significant, structural drag on the CELS index, indicating that investors view regulatory 

inconsistency as a fundamental impediment to future profitability. 

These findings carry two important implications for applied economics. First, for policymakers, they 

underscore that intermittent support is insufficient; what the green energy sector requires is credible, long-term 

policy commitment to stabilise investment cycles (Calcaterra et al., 2024; OECD/IEA, 2024). We suggest specific 

measures such as locking in regulatory frameworks or providing policy-continuity incentives to de-risk the sector. 

Second, for finance professionals, our results highlight the need for risk-management strategies that differentiate 

between hedging against financial volatility (short run) and protecting capital from regulatory obsolescence (long 

run), thereby informing more robust green-portfolio construction (Bouri et al., 2025; Pham et al., 2025). 

1. Literature Review 

Policy-Driven and Regulatory Uncertainty 

The renewable energy industry works in a highly regulated environment, in which policies related to fiscal 

incentives, subsidy mechanisms and long-term regulatory stability influence the return on investment. Therefore, 

the uncertainty of the credibility or stability of climate policies can impact both market behaviour and investment 

decisions. As such, the Climate Policy Uncertainty (CPU) index developed by Gavriilidis (2021) captures this aspect 

of investment and can be used for measuring the effects of this policy uncertainty on the performance of green 

investment assets. Research indicates that uncertainty with climate policy can increase or decrease demand for 

investment depending upon if any changes in climate policy are perceived by investors as an opportunity or a risk 

(Zaier et al., 2024; Gürsoy et al., 2024). 
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Recent research has emphasized that regulatory uncertainty for extended periods results in a structural 

drag on equity valuations in renewable energy (Aharon et al., 2025), because of increased financing costs and 

delayed capital inflow (Li et al., 2025; Calcaterra et al., 2024). Gavriilidis (2021) makes clear that climate policy 

uncertainty interacts with environmental policy stringency, which drives the direction and magnitude of investor 

responses, with inconsistent frameworks putting risk back on the table in terms of repricing. Other researchers have 

also found clean energy markets to be mispriced predominantly on expectation changes to policy and policy 

uncertainty (Cheng & Chiu., 2018; Qin et al., 2020), with adjustments occurring rapidly in valuation dynamics (Bouri 

et al., 2025; Pham et al., 2025). Overall, this literature points to the critical need for credible, transparent, and long-

term commitments provided at the regulatory level to sustain investor confidence in renewable energy markets. 

Macroeconomic and Financial Volatility Channels 

Apart from ambiguity around policy, other significant macro-financial factors that influence renewable stock 

returns include oil prices, interest rates, exchange rates, and periods of market volatility. Oil prices serve as a cost 

benchmark for clean energy production, and a competitive fuel substitute to clean energy resources (Zhao., 2020; 

Saeed et al., 2021; Dinh., 2025) researchers have offered evidence of asymmetric effects from oil price changes 

(Ahmad., 2017; Bondia et al., 2016). Specifically, some research suggests oil prices serve primarily substitutionally, 

as in higher prices for oil will make renewables relatively more competitive (Maghyereh et al., 2019; Sadorsky, 

2012). while others find complementary relationships under technology-linked conditions (Niu., 2021; Jiang et al., 

2021; Dawar et al., 2021). 

Another important channel of transmission is macroeconomic tightening, particularly in the form of higher 

Treasury yields and an increase in the value of the dollar. An increase in the value of the dollar, on average, reduces 

global liquidity and raises the cost of financing projects, thereby dampening renewable energy equity returns 

(Kocaarslan & Soytas, 2019; Gordo et al., 2024). The results point to potential sustained adverse effects on 

renewable equity prices as a result of monetary policy normalization; however, it should be noted that volatility 

spillovers would also shape market behaviour during higher risk regimes. 

The VIX index, which acts as a proxy for broad-based volatility, can have a strong impact on clean energy 

equities (Zhang et al., 2024).  Bouri et al. (2025) and Ghosh (2022) note that volatility shocks induce immediate 

negative shock to clean energy returns, demonstrating the tendency of investors to fly towards high-beta assets 

during volatility spikes.  However, on longer time horizons, capital usually moves back toward green assets as 

capital is being rebalanced for sustainability (Pham et al., 2025).  All of these findings suggest renewable equities 

react differently to short-term liquidity shocks versus long-term macro-financial constraints, thereby necessitating a 

model designed to differentiate between these two-time legs. 

Characteristics of the Clean Edge Green Energy Index (CELS) 

The NASDAQ Clean Edge Green Energy Index (CELS) monitors publicly traded companies that operate in 

clean energy technologies like solar, wind, biofuels, and advanced storage and which are typically companies with 

a growth emphasis and capital intensive, and are sensitive to government incentives and research grants (Lyócsa 

& Todorova, 2024; Pham et al., 2025). Consequently, CELS constituents have a stronger relationship with changes 

in interest rates, policy stability, and international equity flow compared to traditional equity indices. 

Past research has shown that clean energy indices’ performance often exhibits sluggish adjustment to 

macroeconomic news and strong downside risk transmission during episodes of financial distress (Gavriilidis, 2021; 

Ghosh, 2022). The CELS index is an appropriate stand-in for assessing the joint impact of climate policy and 

uncertainty in the macro-financial environment on renewable stock performance because it is a hybrid index of high 

policy exposure and high innovation dependence. Consequently, the structure of the CELS index provides a 

targeted lens for consideration of the sustainability finance dimension of systemic market risk.  
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Methodological Approaches in Renewable Finance Research 

Several econometric methods have been used to study uncertainty and renewable energy markets. In earlier 

research, VAR and GARCH models have been used to analyse volatility spillovers (Sadorsky, 2012; Liu & Hamori, 

2020). More recently, panel regressions and mixed-frequency methods have emerged to study uncertainty (Zaier 

et al., 2024). However, these methods do not provide a dynamic adjustment process between short- and long-run 

relationships. The Autoregressive Distributed Lag (ARDL) framework designed by Pesaran, Shin, and Smith (2001) 

remedies this limitation by permitting variables with different orders of integration (I(0) or I(1)) and jointly estimating 

the short- and long-run effects. Its capacity for cointegration and short-run error-correction mechanisms make 

ARDL particularly suitable for financial time series that have mixed integration properties and may exhibit structural 

breaks. The recent applications of the ARDL approach in energy finance indicate its robustness in capturing 

complex uncertainty interactions (Wang et al., 2025; Yuen & Yuen, 2024). For these reasons, the ARDL model is 

the most appropriate model for evaluating how policy and macroeconomic uncertainty affect renewable stock 

returns over different time horizon. 

Research Gap and Contribution 

Despite the growth of literature on renewable energy finance, several critical gaps remain. Most existing 

studies examined either policy uncertainty or macroeconomic volatility in isolation, the joint transmission of both 

remains largely unstudied. Further, the prior studies have rarely distinguished short-run shocks and long-run 

equilibrium effects, which are key to developing sustained investment and policy strategies. 

This study contributes to filling these gaps in three ways. First, it jointly examines multiple uncertainty 

channels, including climate policy uncertainty, global uncertainty, market volatility, and macro-financial variables, 

within a unified ARDL framework. Second, it captures both the short-term speculative adjustments and the long-

term equilibrium dynamics of renewable energy stocks, addressing the time-horizon asymmetry absent in previous 

models. Third, it provides actionable insights for policymakers and investors by linking empirical findings to targeted 

policy prescriptions and risk-management strategies. Through this comprehensive approach, the study advances 

the literature on uncertainty transmission and strengthens the applied relevance of renewable energy finance 

research. 

2. Data and Methodology 

Data Description 

This study employs monthly data spanning from January 2008 to June 2025. The dependent variable is the 

Clean Edge Green Energy Index (CELS) obtained from NASDAQ, which serves as a proxy for US renewable 

energy stock performance. Explanatory variables include: 

▪ Climate Policy Uncertainty Index (CPU): US specific climate policy uncertainty index developed by Gavriilidis 

(https://www.policyuncertainty.com/climate_uncertainty.html);  

▪ Brent Crude Oil Price (OIL): Extracted from the Federal Reserve Bank of St. Louis (FRED: 

DCOILBRENTEU); 

▪ BIS Broad Dollar Index (BIS): Monthly trade-weighted US dollar index from the Bank for International 

Settlements; 

▪ Global Policy Uncertainty Index (GPU): World-level policy uncertainty index constructed by Baker, Bloom, 

and Davis. 

▪ 10-Year Treasury Yield (YIELD): Monthly US government bond yield from FRED(FRED: DGS10). 

▪ Volatility Index (VIX): Market-wide implied volatility, from FRED. 

To ensure stationarity and consistency with empirical finance literature, all asset price variables, including 

the NASDAQ Clean Edge Green Energy Index (CELS), Brent crude oil prices, and the BIS Broad Dollar Index, are 

transformed into returns. These returns are calculated as log differences of monthly closing values. Using returns 

instead of price levels reduces the risk of spurious regression because financial price series are often integrated of 

https://www.policyuncertainty.com/climate_uncertainty.html
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order one (I(1)), while their returns are usually stationary. This method also allows for interpreting results in 

percentage change terms, which provides a clearer view of market dynamics and relative changes across asset 

classes. Such a transformation is common in energy and financial econometrics. It ensures comparability and solid 

inference when examining the relationships among exchange rates, commodity prices, and renewable energy 

equity performance. 

To capture extraordinary events, three dummy variables were introduced.  

▪ DUM_PARIS (2016M12 onward): Represents the Paris Agreement implementation phase. 

▪ DUM_COVID (2020M03–2020M05): Captures the initial market panic of the COVID-19 pandemic. 

▪ DUM_UKR (2022M02-2022M06): Reflects pulse of geopolitical shocks from the Russia–Ukraine conflict. 

These dummies are coded as 1 during the respective periods and 0 at other times. Their inclusion makes 

sure that results are not influenced by structural changes caused by these extraordinary events. 

Econometric Framework 

The analysis proceeds in several steps, fist one stationarity testing. Initially, all variables undergo testing for 

stationarity through the Augmented Dickey-Fuller (ADF) and KPSS tests. The results demonstrate that none of the 

variables are integrated of order two, I(2), which is necessary to use the Autoregressive Distributed Lag (ARDL) 

framework. Some variables are stationary at level, and others are stationary at I(1), which satisfies the condition of 

mixed orders of integration. 

Table 1: Stationarity testing  

Variable 
Level Stationary 

(ADF)? 

Level Stationary 

(KPSS)? 

First Difference Stationary 

(ADF) 

First Difference Stationary 

(KPSS) 

CELS No No Yes Yes 

BIS No No Yes Yes 

CPU No No Yes Yes 

GPU Yes No N/A Yes 

OIL Yes Yes N/A N/A 

VIX Yes Yes N/A N/A 

YIELD_10Y No No Yes Yes 

Source: Authors’ own calculation 

To evaluate the short- and long-run empirical effects of policy-related and macroeconomic uncertainty on 

renewable energy equity returns, we utilize the Autoregressive Distributed Lag (ARDL) bounds testing approach 

outlined by Pesaran et al.  (2001). The ARDL model is attractive to its application in time-series financial data and 

allows for integration of the variables of interest that may have different orders of integration; I(0) and I(1). The 

ARDL model estimates the short-run dynamics and the long-run equilibrium relationship among the variables 

simultaneously, allowing clear separation of short-run transitory fluctuations and long-run structural impacts. This 

is especially useful for observing how short-lived market shocks, such as increasing oil prices and volatility, differ 

from different effects stemming from policy uncertainty in study the performance of renewables stock. 

The general ARDL specification used in this study is as follows: 

R_CELS_t =  α0 +  φ1 ∗  R_CELS_{t − 1}  +  β0 ∗  R_OIL_t +  γ0 ∗  R_BIS_t +  δ0 ∗  CPU_t 

+  δ1 ∗  CPU_{t − 1}  +  δ2 ∗  CPU_{t − 2}  +  δ3 ∗  CPU_{t − 3}  +  θ0 ∗  GPU_t 

+  θ1 ∗  GPU_{t − 1}  +  θ2 ∗  GPU_{t − 2}  +  θ3 ∗  GPU_{t − 3}  +  θ4 ∗  GPU_{t

− 4}  +  η0 ∗  VIX_t +  η1 ∗  VIX_{t − 1}  +  λ0 ∗  YIELD_10Y_t +  λ1 

∗  YIELD_10Y_{t − 1}  +  ω1 ∗  D_PARIS_t +  ω2 ∗  D_COVID_t +  ω3 ∗  D_UKR_t

+  ε_t 
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where: α0: Intercept term, φi: Short-run autoregressive coefficients for lagged RCELS, βj: Short-run coefficients for 

Brent oil returns, γk: Short-run coefficients for BIS dollar index returns, δl: Short-run coefficients for CPU 

(climate policy uncertainty), θm: Short-run coefficients for GPU (global policy uncertainty), ηn: Short-run 

coefficients for VIX, λo: Short-run coefficients for U.S. Treasury yields, ω1, ω2, ω3: Coefficients for 

structural break dummy variables (Paris Agreement, COVID-19, Ukraine conflict), εt: Error term at time t. 

Estimation Procedure 

The ARDL model firstly estimated using Ordinary Least Squares (OLS). However, since heteroskedasticity 

was detected in preliminary diagnostic tests, Newey–West HAC robust standard errors are applied to ensure 

consistent inference. 

The optimal lag lengths for each variable were determined using the Akaike Information Criterion (AIC), as 

it balances model fit and parsimony, especially for smaller sample sizes. Multiple lag specifications were examined 

to ensure consistency of the long-run coefficients and stability of the error-correction term. The final specification 

was selected based on the minimum AIC value and theoretical coherence among variables. After estimation, a 

series of diagnostic tests was performed to verify model adequacy. The Breusch–Godfrey LM test confirmed the 

absence of serial correlation, while the Breusch–Pagan–Godfrey test verified homoscedasticity of residuals. The 

Jarque–Bera test indicated normality, and the Ramsey RESET test confirmed correct functional specification. To 

ensure the reliability of the long-run coefficients, the CUSUM and CUSUMSQ tests were applied; both plots 

remained within the 5% critical bounds, confirming parameter stability over the entire sample period. 

The subsequent section presents the empirical findings, beginning with the ARDL bounds test results for 

cointegration, followed by the short-run and long-run coefficient estimates and the corresponding post-estimation 

diagnostics. 

3. Results and Interpretation 

Table 2 reports the baseline ARDL(1, 0, 0, 3, 4, 1, 1) estimation results, selected on the basis of the Akaike 

Information Criterion (AIC). The model explains approximately 57.6% of the variation in green energy stock returns 

(R² = 0.576), with a Durbin–Watson statistic close to 2, suggesting that serial correlation is not a concern. The F-

statistic confirms the overall joint significance of the regressors at the 1% level. The results reveal a strong 

persistence effect, as the lagged dependent variable (R_CELS(-1)) is positive and highly significant (p < 0.01), 

indicating that past movements in renewable energy returns carry over into subsequent periods. 

Table 2: Baseline ARDL 

Variable Coefficient Std. Error t-Statistic Prob. 

R_CELS(-1) 0.2109 0.0470 4.4827 0.0000 

R_OIL -0.0032 0.0364 -0.0867 0.9310 

R_BIS -1.4778 0.4088 -3.6152 0.0004 

CPU 0.0165 0.0094 1.7489 0.0820 

CPU(-1) 0.0092 0.0104 0.8849 0.3773 

CPU(-2) -0.0225 0.0102 -2.2091 0.0284 

CPU(-3) -0.0210 0.0140 -1.5037 0.1344 

GPU 0.0033 0.0103 0.3223 0.7476 

GPU(-1) -0.0118 0.0130 -0.9074 0.3654 

GPU(-2) 0.0325 0.0166 1.9571 0.0518 

GPU(-3) 0.0262 0.0155 1.6907 0.0926 

GPU(-4) -0.0300 0.0148 -2.0226 0.0445 

VIX -0.8427 0.1025 -8.2229 0.0000 
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Variable Coefficient Std. Error t-Statistic Prob. 

VIX(-1) 0.7105 0.0944 7.5244 0.0000 

YIELD_10Y 3.5579 2.1891 1.6252 0.1058 

YIELD_10Y(-1) -4.7527 2.2288 -2.1324 0.0343 

DUM_COVID 4.8674 2.5318 1.9225 0.0561 

DUM_UKR 0.9879 1.8224 0.5421 0.5884 

DUM_PARIS -0.4305 1.2485 -0.3448 0.7307 

Constant (C) 5.0326 1.8279 2.7532 0.0065 

Source: Author’s own calculation 

Model statistics: 

▪ R² = 0.5763, Adj. R² = 0.5331; 

▪ AIC = 6.4009, SC = 6.7240, HQC = 6.5315; 

▪ Durbin-Watson = 2.0371; 

▪ F-statistic = 13.318 (p = 0.0000). 

In terms of macro-financial drivers, the BIS broad dollar index (R_BIS) exhibits a large and negative effect 

(β = -1.48, p < 0.01), suggesting that a stronger US dollar significantly dampens renewable energy stock 

performance. This finding is consistent with the view that dollar appreciation tightens global financial conditions and 

raises the relative cost of renewable energy investments. 

The role of climate policy uncertainty (CPU) is more nuanced. While the contemporaneous coefficient of 

CPU is weakly positive (p < 0.10), its lagged effects are negative and significant at conventional levels (CPU(-2): 

β=-0.0225, p < 0.05). This pattern suggests that climate policy shocks initially create speculative gains but 

subsequently suppress market sentiment and investment flows into green equities. 

The global policy uncertainty index (GPU) displays mixed dynamics. While GPU(-2) is marginally positive 

(p ≈ 0.05), GPU(-4) turns negative and significant (β = -0.0300, p < 0.05). This alternating effect points to the 

presence of short-term speculative adjustments, followed by longer-term adverse impacts of global policy 

uncertainty on green energy markets. 

Market risk plays a decisive role. The VIX has a strong negative contemporaneous effect (β = -0.84, p < 

0.01), while its one-month lagged value is strongly positive (β = 0.71, p < 0.01). This asymmetry reflects investors’ 

initial withdrawal from risky assets during volatility spikes, followed by a corrective rebound as markets adjust. 

Bond market dynamics also matter: the 10-year U.S. Treasury yield exerts a mixed influence, with the 

contemporaneous coefficient being positive but statistically insignificant, whereas the lagged effect is negative and 

significant (β = -4.75, p < 0.05). This result highlights the delayed tightening impact of rising bond yields on green 

energy stocks. 

Regarding structural shocks, the COVID-19 dummy is marginally significant at the 10% level, with a positive 

effect on returns. This result is consistent with the post-pandemic green recovery narrative, where policy stimulus 

and investor attention to sustainability boosted renewable energy stocks. In contrast, the Russia–Ukraine conflict 

and the Paris Agreement announcement dummies do not show significant standalone effects, suggesting that 

markets either quickly priced in these shocks or perceived them as less decisive for green equity performance 

relative to ongoing macro-financial drivers. 

Taken together, the ARDL results underscore that green energy stocks are highly sensitive to global financial 

conditions, climate policy-related uncertainty, and market volatility. The dynamics highlight both the short-run 

speculative responses and longer-term adjustment mechanisms, confirming that renewable energy equities are not 

insulated from broader macro-financial and policy risks.  
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Table 3: F-Bounds test 

Test Statistic Value Signif. I(0) I(1) 

F-statistic 23.38436 10% 1.99 2.94 

k 6 5% 2.27 3.28 

  2.5% 2.55 3.61 

  1% 2.88 3.99 

Source: Author’s own calculation 

The bounds test (Table 3) strongly rejects the null hypothesis of no long-run relationship among the 

variables. The computed F-statistic (23.38) exceeds the 1% upper bound critical value (3.99), indicating the 

existence of a stable long-run cointegration between clean energy stock returns (R_CELS) and the selected 

macroeconomic and uncertainty indicators. 

Table 4: ARDL Long-Run form 

Variable Coefficient Std. Error t-Statistic Prob. 

R_OIL -0.003997 0.046151 -0.087 0.9311 

R_BIS -1.872640 0.531193 -3.525 0.0005*** 

CPU -0.022641 0.017032 -1.329 0.1854 

GPU 0.025711 0.018141 1.417 0.1581 

VIX -0.167540 0.075198 -2.228 0.0271** 

YIELD_10Y -1.514119 0.717284 -2.111 0.0361** 

C (Constant) 6.377331 2.367297 2.694 0.0077*** 

Source: Author’s own calculation 

EC=R_CELS − (−0.0040 ∗ R_OIL − 1.8726 ∗ R_BIS − 0.0226 ∗ CPU +  0.0257 ∗ GPU − 0.1675 ∗

VIX − 1.5141 ∗ YIELD_10Y + 6.3773) 

In the long run (Table 4), the results reveal that the BIS Broad Dollar Index exerts a significant negative 

impact on clean energy returns (–1.87, p < 0.01), suggesting that a stronger US dollar diminishes the relative 

attractiveness of green investments. Similarly, the 10-year Treasury yield (–1.51, p < 0.05) and the market volatility 

index (VIX) (–0.17, p < 0.05) negatively influence clean energy performance, underscoring the sector’s sensitivity 

to interest rate conditions and global risk sentiment. In contrast, crude oil prices (–0.004, n.s.), the Climate Policy 

Uncertainty (CPU) index (–0.023, n.s.), and the Global Policy Uncertainty (GPU) index (+0.026, n.s.) do not exhibit 

statistically significant long-run effects. 

Table 5: ECM table 

Variable Coefficient Std. Error t-Statistic Prob. 

D(CPU) 0.0165 0.0082 2.0078 0.0461** 

D(CPU(-1)) 0.0435 0.0095 4.5792 0.0000*** 

D(CPU(-2)) 0.0210 0.0086 2.4398 0.0156** 

D(GPU) 0.0033 0.0116 0.2857 0.7755 

D(GPU(-1)) -0.0287 0.0120 -2.3881 0.0179** 

D(GPU(-2)) 0.0037 0.0117 0.3201 0.7493 

D(GPU(-3)) 0.0300 0.0108 2.7827 0.0059*** 

D(VIX) -0.8427 0.0845 -9.9761 0.0000*** 

D(YIELD_10Y) 3.5579 2.0675 1.7209 0.0869* 
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Variable Coefficient Std. Error t-Statistic Prob. 

DUM_COVID 4.8674 3.4824 1.3977 0.1639 

DUM_UKR 0.9879 2.6989 0.3660 0.7148 

DUM_PARIS -0.4305 0.5484 -0.7849 0.4335 

CointEq(-1) -0.7891 0.0566 -13.9325 0.0000*** 

Note: ***p<0.01, **p<0.05, p<0.10.  

Source: Author’s own calculation.  

Model statistics: 

▪ R-squared = 0.7076; 

▪ Adj. R-squared = 0.6894; 

▪ Durbin-Watson = 2.037; 

▪ AIC = 6.3329 | SC = 6.5429 | HQ = 6.4178. 

The results of the error correction model (ECM) are reported in Table 5. The coefficient of the error correction 

term (CointEq(-1)) is -0.789 and statistically significant at the 1% level, which indicates a strong adjustment 

mechanism. Specifically, nearly 79% of short-run deviations from the long-run equilibrium are corrected within a 

month, implying a rapid speed of adjustment in renewable energy stock returns following shocks. 

In the short-run dynamics, several variables exhibit significant effects. First, climate policy uncertainty (CPU) 

has a positive and significant influence on renewable energy returns. The coefficients of D(CPU), D(CPU(-1)), and 

D(CPU(-2)) are all positive and statistically significant, suggesting that increases in policy uncertainty tend to boost 

renewable stock returns, possibly reflecting investors’ perception of renewable energy as a hedge against 

regulatory risks. This finding is consistent with prior evidence that climate-related policy shocks alter capital flows 

into the green sector. 

Global policy uncertainty (GPU) shows a more complex pattern. While the contemporaneous and second 

lag terms of GPU are insignificant, D(GPU(-1)) enters with a negative and significant coefficient, and D(GPU(-3)) 

shows a positive and significant effect. This asymmetric response indicates that global policy shocks may initially 

depress renewable energy stock performance but tend to be offset in later periods, reflecting delayed portfolio 

reallocations by global investors. 

Market volatility (VIX) exerts a strong negative effect on renewable stock returns, with a coefficient of -0.843 

significant at the 1% level. This underscores the sensitivity of green equity markets to financial uncertainty, 

consistent with the broader literature on the safe-haven failure of renewable stocks during periods of heightened 

volatility. 

The 10-year US Treasury yield (YIELD_10Y) is positive but only marginally significant at the 10% level, 

implying that rising long-term interest rates may weakly enhance renewable stock returns. This counterintuitive 

finding may reflect capital reallocation dynamics or the increasing attractiveness of renewable investments under 

tightening monetary conditions. 

Regarding the structural dummy variables, none of the three events, COVID-19, the Ukraine conflict, and 

the Paris Agreement, show statistically significant effects in the short-run. Although the coefficients are in the 

expected directions (positive for COVID-19 and Ukraine conflict, negative for Paris Agreement), the results suggest 

that the impact of these events is already captured by broader uncertainty and volatility measures, rather than 

exerting direct isolated effects on renewable stock returns. 

Overall, the short-run results confirm that climate policy uncertainty and market volatility are the key drivers 

of renewable energy stock performance, while the significant and sizeable ECM coefficient highlights the existence 

of a robust long-run equilibrium relationship. 
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Diagnostic Tests 

Table 6: Breusch–Godfrey LM test 

Test Statistic Value Prob. Decision (5% level) 

F-statistic 1.461702 0.1428 Fail to reject H₀ → No serial correlation 

Obs*R-squared 18.86457 0.0918 Fail to reject H₀ → No serial correlation 

Source: Author’s own calculation 

To ensure that the ARDL model is free from residual autocorrelation, the Breusch–Godfrey LM test (Table 

6) was conducted with up to 12 lags. The results show that the null hypothesis of no serial correlation cannot be 

rejected, as both the F-statistic (1.46, p = 0.143) and the Obs*R-squared statistic (18.86, p = 0.092) are statistically 

insignificant at conventional levels. This shows that the residuals do not have serial correlation. This means that 

the model is well-specified over time. 

Moreover, the Durbin-Watson statistic (≈2.02) provides evidence that there is no first-order autocorrelation. 

Overall, both findings indicate that the ARDL specification is a good representation of the data-generating process, 

and there were no systematic patterns in the residuals generated from the ARDL model. 

Table 7: Ramsey RESET test 

Test Statistic Value df Probability 

t-statistic 0.2174 185 0.8281 

F-statistic 0.0473 (1,185) 0.8281 

Likelihood Ratio (LR) 0.0526 1 0.8186 

Source: Author’s own calculation 

The Ramsey RESET test (Table 7) was implemented to test for any specification errors in the context of the 

ARDL model. From the test results for the ARDL model, we found the t -statistic (0.2174, p = 0.8281), F-statistic 

statistics (0.0473, p = 0.8281), and the likelihood ratio statistics (0.0526, p = 0.8186) are statistically insignificant. 

This implies we are unable to reject the null hypothesis of correct model specification.  

In other words, the ARDL model does not suffer from omitted variables bias or incorrect functional form. In 

summary, the results confirmed our initial findings that the model is correctly specified and the model accounts 

quite well for the short-run and long-run dynamics of renewable energy stock returns. 

Figure 1: Normality of residuals  
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The Jarque-Bera (JB) test was used to check if the residuals of the ARDL model are normally distributed. 

As highlighted in Figure 1, The JB test result was a JB statistic of 4.2666 and a p-value of 0.1184, which is above 

the 5 % significance level, thus we cannot reject normality of the residuals. 
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The histogram and descriptive statistics were in accordance with this finding. The residuals were well-

behaved with a mean very close to zero (–2.40E–15), slight skewness (0.2114) and 3.56 for Kurtosis, which being 

close to the Gaussian reference of 3.0. This indicates that the residuals were roughly normally distributed, which is 

a necessary assumption of the ARDL framework. 

Figure 2: CUSUM test 
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To validate the stability of the ARDL coefficients, a CUSUM test was performed. As highlighted in Figure 2, 

the CUSUM statistic remains comfortably within the 5% significance bounds over the sample period (2008M01-

2025M06), suggesting that the estimated model does not have structural breaks or parameter instability. 

Figure 3: CUSUM of Square test 
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We also conducted the CUSUM of Squares test in addition to the CUSUM test to determine whether the 

ARDL coefficients are stable. In Figure 3, we see that the CUSUM statistic has remained steadily within the 5% 

significance bounds throughout the entire sample period of January, 2008 to June, 2025. This means we did not 

experience any structural breaks or parameter instability in the estimated model. The results from the CUSUM and 

CUSUM of Squares tests point to the dynamic stability of the ARDL specification. This enhances the reliability of 

both the short-run and long-run parameter estimates, hence ensuring that the empirical relationships are time-

consistent in interpretation and easily interpretable for policy purposes (Table 8a and Table 8b).  
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Table 8a: Robustness check 

Variable Baseline ARDL (1,0,0,3,4,1,1) Robustness ARDL (1,0,0,3,2,1,1) 

R_CELS(-1) 0.211*** (0.047) 0.205*** (0.043) 

R_OIL −0.003 (0.036) 0.021 (0.034) 

R_BIS −1.478*** (0.409) −1.451*** (0.386) 

CPU 0.016* (0.009) 0.019* (0.010) 

CPU(-1) 0.009 (0.010) 0.006 (0.011) 

CPU(-2) −0.023** (0.010) −0.020** (0.010) 

CPU(-3) −0.021 (0.014) −0.020 (0.014) 

GPU 0.003 (0.010) −0.003 (0.010) 

GPU(-1) −0.012 (0.013) −0.007 (0.013) 

GPU(-2) 0.032* (0.017) 0.032** (0.014) 

GPU(-3) 0.026* (0.016) — 

GPU(-4) −0.030** (0.015) — 

VIX −0.843*** (0.102) −0.833*** (0.102) 

VIX(-1) 0.710*** (0.094) 0.708*** (0.094) 

YIELD_10Y 3.558 (2.189) 2.652 (2.155) 

YIELD_10Y(-1) −4.753** (2.229) −3.773* (2.202) 

DUM_COVID 4.867* (2.532) 4.797* (2.477) 

DUM_UKR 0.988 (1.822) 1.424 (2.073) 

DUM_PARIS −0.430 (1.248) −0.835 (1.197) 

Constant 5.033** (1.828) 4.300** (1.857) 

Source: Author’s own calculation 

Table 8b: Robustness check 

Statistic Baseline Robustness 

R² 0.576 0.556 

Adjusted R² 0.533 0.516 

AIC 6.4009 6.4324 

Schwarz (BIC) 6.7240 6.7222 

Durbin–Watson 2.0371 2.0514 

Source: Author’s own calculation 

To check the strength of the baseline ARDL (1,0,0,3,4,1,1), we estimated an alternative model with fewer 

lags (1,0,0,3,2,1,1). The diagnostics indicate that the baseline model provides a slightly better fit, with a higher 

adjusted R² (0.533 compared to 0.516) and a slightly lower AIC (6.4009 versus 6.4324). Meanwhile, the robustness 

model shows a slightly lower Schwarz criterion (6.7222 compared to 6.7240). In both models, the Durbin–Watson 

statistics are close to 2 (2.0371 and 2.0514), ruling out serial correlation. These results indicate that the alternative 

lag structure does not materially alter the explanatory power or statistical adequacy of the model. 

Across specifications, the key relationships remain stable. The lagged dependent variable R_CELS(−1) is 

consistently positive and significant, highlighting return persistence. The BIS index exerts a strong and negative 

effect in both models, while the VIX maintains its expected role, negative in contemporaneous form and positive in 

its lag, indicating volatility spillovers. Climate Policy Uncertainty (CPU) continues to display heterogeneous lag 

effects: a positive short-term effect (CPU) and a negative impact at the second lag [CPU(-2)], with stability across 
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models. Although the robustness specification reduces higher-order lags of GPU, GPU(-2) remains statistically 

significant, reinforcing the robustness of this channel. Similarly, the 10-year bond yield shows a negative lagged 

effect in both models, albeit with slightly reduced significance in the robustness check. The dummy variables for 

COVID-19 and the Ukraine war retain their expected signs, with COVID remaining significant. 

Overall, the similarity in coefficients, signs, and statistical significance across the two ARDL specifications 

confirms that the central findings, namely the role of financial conditions, policy uncertainty, and global shocks in 

shaping renewable energy stock returns, are robust to alternative lag structures. 

Conclusion and Policy Implications 

This study examines the factors that affect US renewable energy stock returns, using the NASDAQ Clean 

Edge Green Energy Index (CELS) as a benchmark. It employs an ARDL modelling framework from January, 2008 

to June, 2025. The analysis includes climate policy uncertainty (CPU), oil price changes, currency strength (BIS 

Broad Dollar Index), market volatility (VIX), global policy uncertainty (GPU), and interest rate factors (10-year US 

Treasury yield). This provides a detailed look at both short- and long-term influences on clean energy stock 

performance. 

The results show several important findings. First, green stock returns are highly persistent; past returns 

greatly affect current performance. Second, the BIS dollar index has a strong negative effect on renewable energy 

stocks in both the short and long term. This supports the view that a stronger dollar can tighten global financial 

conditions and reduce investor interest in capital-intensive clean energy projects. Long-term interest rates and 

market volatility also negatively impact renewable stock returns, highlighting the sector's sensitivity to changes in 

global financial conditions and risk sentiment. 

In contrast, crude oil prices and measures of global policy uncertainty do not show significant long-term 

effects, although they do affect short-term market trends. The findings on climate policy uncertainty are particularly 

significant: CPU shocks have a positive short-term impact on renewable energy returns. This suggests that 

increased policy discussions or regulatory changes can initially draw capital to the green sector as investors 

reposition themselves for policy-driven opportunities. However, the effects of lagged CPU show that prolonged 

uncertainty can negatively influence market sentiment. This indicates a complex relationship between policy 

developments and renewable stock performance that changes over time. The estimated error correction term is 

negative, highly significant, and large (–0.789). This confirms a strong and quick adjustment to long-term equilibrium 

aftershocks. Structural dummy variables for major events, like the COVID-19 pandemic and the Russia-Ukraine 

conflict, show limited direct effects when broader financial uncertainty is considered. This indicates that clean 

energy markets are more responsive to systemic risk conditions than to specific geopolitical events. 

Overall, these findings suggest that renewable energy stock performance is influenced by macro-financial 

factors. Climate policy discussions have subtle effects, with short-term volatility often followed by longer-term 

adjustments. The evidence stresses the importance of stable economic conditions, predictable regulatory 

frameworks, and risk-aware investment strategies in supporting the growth of renewable energy markets. 

Empirical evidence demonstrates that long-term uncertainty, especially financial and policy uncertainty, 

negatively impacts growth and stability for renewables investments. Therefore, authorities should take steps to 

enhance policy credibility, accessibility to finance and market certainty. To start with, renewable policy frameworks 

must be long-term and legally binding. Commitments such as feed-in tariffs for a set number of years, obligations 

to purchase renewables or production tax credits, must be written into law and not tied to a short-term budget cycle. 

These long-term and transparent commitments lower barriers to changes in policy, lower perceived investment risk 

by creating continuity and stability of expected returns. Next, the incentives must be tied to performance and not 

upon project-based approvals. Subsidies based on quantifiable performance such as verified emission reductions, 

efficiency improvements or technology advancements would enable policymakers to link public funding to climate 

objectives with minimal political discretion.  
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Third, it is necessary to modify financing mechanisms to mitigate macroeconomic tightening. There is 

significant long-run sensitivity of CELS to interest rates and the U.S. dollar that reveals renewable projects are 

especially exposed to higher costs of financing. Expanding domestic green bond markets, concessional credit 

facilities, and risk-mitigation instruments can protect renewable financing projects from global liquidity shocks. 

Implications for Investors and Asset Managers 

From an investment perspective, the results offer actionable insights for managing renewable portfolios 

under uncertainty. 

First, investment horizon should direct strategy. The positive short-run effect of policy uncertainty shows 

that investors may seek to capitalize on tactical opportunities around policy events. However, the negative long-

run effects of macro-financial tightening imply a more cautious approach to strategic allocation. Long-run investors 

should favour firms with diversified revenues, low leverage, and stable policy exposure. Second, active hedging 

against financial volatility is critical. The large negative coefficients for the USD, Treasury yields, and VIX suggest 

that renewable equities are sensitive to shocks to liquidity and risk sentiment. Asset managers can hedge these 

exposures using interest rate derivatives, volatility instruments, or allocating into more defensive green sectors, 

such as utilities, energy infrastructure, and storage. Third, incorporating policy uncertainty into risk modelling 

enhances resilience of portfolios. Following Climate Policy Uncertainty (CPU) index as a systematic risk factor 

allows for dynamic rebalancing, i.e., increasing exposure during stable policies and decreasing exposure during 

uncertain regulatory periods. 

Finally, blending equity exposure with green debt instruments, including sustainability-linked bonds and 

infrastructure debt, can reduce portfolio volatility and smooth returns across uncertainty cycles. In short, these 

results stress that successful investments in renewable energy necessitate distinguishing between transitory 

financial turbulence and structural policy risk. Both long-term stability in policy and disciplined management of 

portfolios can further both financial return and the larger aim of sustainable energy transition. 

Credit Authorship Contribution Statement 

Akshay Sahu contributed to the conceptualization, methodology, data analysis, and writing of the manuscript. Avneesh 

Kumar provided supervision, guidance, and critical review of the work. 

Acknowledgments/Funding 

The research is conducted without financial assistance from any organisation. 

Conflict of Interest Statement 

The authors declare that the research was conducted in the absence of any commercial or financial relationships that 

could be construed as a potential conflict of interest. 

Data Availability Statement 

The data supporting the findings of this study are publicly available on Mendeley Data at the following link: 

https://data.mendeley.com/datasets/pptbmyvv8h/1 and https://doi.org.10.17632/pptbmyvv8h.1  

References 

IEA (2025). Global Energy Review, IEA, Paris. https://www.iea.org/reports/global-energy-review-2025  

IEA (2024). World Energy Outlook, IEA, Paris. https://www.iea.org/reports/world-energy-outlook-2024. Licence: CC BY 4.0 

(report); CC BY NC SA 4.0 (Annex A) 

OECD (2024). OECD Economic Outlook, Volume 2024 Issue 1: An unfolding recovery, OECD Publishing, Paris. 

https://doi.org/10.1787/69a0c310-en  

Aharon, D. Y., Demir, E., & Umar, Z. (2025). On the connectedness between climate policy uncertainty, green bonds, and 

equity. Modern Finance, 2025, 1. https://doi.org/10.3390/mf.v3i1.230  

  

https://data.mendeley.com/datasets/pptbmyvv8h/1
https://doi.org.10.17632/pptbmyvv8h.1
https://www.iea.org/reports/global-energy-review-2025
https://www.iea.org/reports/world-energy-outlook-2024
https://doi.org/10.1787/69a0c310-en
https://doi.org/10.3390/mf.v3i1.230


Volume XX, Winter, Issue 4(90), 2025 

 673 

Ahmad, W. (2017). On the dynamic dependence and investment performance of crude oil and clean energy stocks. Research 

in International Business and Finance, 42, 376–389. https://doi.org/10.1016/j.ribaf.2017.07.140 

Bondia, R., Ghosh, S., & Kanjilal, K. (2016). International crude oil prices and the stock prices of clean energy and technology 

companies: Evidence from non-linear cointegration tests with unknown structural breaks. Energy, 101, 558–565. 

https://doi.org/10.1016/j.energy.2016.02.031 

Bouri, E., Dudda, T. L., Rognone, L., & Walther, T. (2025). Climate risk and the nexus of clean energy and technology stocks. 

Annals of Operations Research, 347(1), 445–469. https://doi.org/10.1007/s10479-023-05487-z  

Calcaterra, M., Aleluia Reis, L., Fragkos, P., Briera, T., de Boer, H. S., Egli, F., Emmerling, J., Iyer, G., Mittal, S., Polzin, F. H. 

J., Sanders, M. W. J. L., Schmidt, T. S., Serebriakova, A., Steffen, B., van de Ven, D. J., van Vuuren, D. P., Waidelich, 

P., & Tavoni, M. (2024). Reducing the cost of capital to finance the energy transition in developing countries. Nature 

Energy, 9(10), 1241–1251. https://doi.org/10.1038/s41560-024-01606-7  

Cheng, C. H. J., & Chiu, C. W. (2018). How important are global geopolitical risks to emerging countries? International 

Economics, 156, 305–325. https://doi.org/10.1016/j.inteco.2018.05.002  

Davis, S. J. (2016). An Index of Global Economic Policy Uncertainty, NBER Working Paper, 22740. 

https://doi.org/10.3386/w22740  

Dawar, I., Dutta, A., Bouri, E., & Saeed, T. (2021). Crude oil prices and clean energy stock indices: Lagged and asymmetric 

effects with quantile regression. Renewable Energy, 163, 288–299. https://doi.org/10.1016/j.renene.2020.08.162  

Dinh, M. T. H. (2025). Interplay of Alternative Energy Sub-Sectors, Oil Prices, and Oil Volatility: Exploring Simultaneous 

Relationships. International Journal of Financial Studies, 13(1). https://doi.org/10.3390/ijfs13010023  

Gavriilidis, K. (2021). Measuring Climate Policy Uncertainty. SSRN: http://dx.doi.org/10.2139/ssrn.3847388 

Ghosh, S. (2022). COVID-19, clean energy stock market, interest rate, oil prices, volatility index, geopolitical risk nexus: 

evidence from quantile regression. Journal of Economics and Development, 24(4), 329–344. 

https://doi.org/10.1108/JED-04-2022-0073  

Gordo, N., Hunt, A., & Morley, B. (2024). Alternative monetary policies and renewable energy stock returns. Energy Economics, 

136. https://doi.org/10.1016/j.eneco.2024.107740  

Gürsoy, S., Jóźwik, B., Dogan, M., Zeren, F., & Gulcan, N. (2024). Impact of Climate Policy Uncertainty, Clean Energy Index, 

and Carbon Emission Allowance Prices on Bitcoin Returns. Sustainability, 16(9). https://doi.org/10.3390/su16093822  

Islam, M. M., Sohag, K., & Mariev, O. (2023). Geopolitical risks and mineral-driven renewable energy generation in China: A 

decomposed analysis. Resources Policy, 80. https://doi.org/10.1016/j.resourpol.2022.103229  

Jiang, Y., Wang, J., Lie, J., & Mo, B. (2021). Dynamic dependence nexus and causality of the renewable energy stock markets 

on the fossil energy markets. Energy, 233. https://doi.org/10.1016/j.energy.2021.121191  

Kocaarslan, B., & Soytas, U. (2019). Dynamic correlations between oil prices and the stock prices of clean energy and 

technology firms: The role of reserve currency (USD). Energy Economics, 84. 

https://doi.org/10.1016/j.eneco.2019.104502  

Li, R., Fang, D., & Xu, J. (2025). Does climate policy uncertainty (CPU) hinder carbon reduction? Evidence using the city-level 

CPU index in China. Energy Economics, 141. https://doi.org/10.1016/j.eneco.2024.108098  

Liu, T., & Hamori, S. (2020). Spillovers to renewable energy stocks in the US and Europe: Are they different? Energies, 13(12). 

https://doi.org/10.3390/en13123162  

Lyócsa, Š., & Todorova, N. (2024). Forecasting of clean energy market volatility: The role of oil and the technology sector. 

Energy Economics, 132. https://doi.org/10.1016/j.eneco.2024.107451  

Maghyereh, A. I., Awartani, B., & Abdoh, H. (2019). The co-movement between oil and clean energy stocks: A wavelet-based 

analysis of horizon associations. Energy, 169, 895–913. https://doi.org/10.1016/j.energy.2018.12.039   

https://doi.org/10.1016/j.ribaf.2017.07.140
https://doi.org/10.1016/j.energy.2016.02.031
https://doi.org/10.1007/s10479-023-05487-z
https://doi.org/10.1038/s41560-024-01606-7
https://doi.org/10.1016/j.inteco.2018.05.002
https://doi.org/10.3386/w22740
https://doi.org/10.1016/j.renene.2020.08.162
https://doi.org/10.3390/ijfs13010023
http://dx.doi.org/10.2139/ssrn.3847388
https://doi.org/10.1108/JED-04-2022-0073
https://doi.org/10.1016/j.eneco.2024.107740
https://doi.org/10.3390/su16093822
https://doi.org/10.1016/j.resourpol.2022.103229
https://doi.org/10.1016/j.energy.2021.121191
https://doi.org/10.1016/j.eneco.2019.104502
https://doi.org/10.1016/j.eneco.2024.108098
https://doi.org/10.3390/en13123162
https://doi.org/10.1016/j.eneco.2024.107451
https://doi.org/10.1016/j.energy.2018.12.039


Journal of Applied Economic Sciences 

 674 

Niu, H. (2021). Correlations between crude oil and stocks prices of renewable energy and technology companies: A multiscale 

time-dependent analysis. Energy, 221. https://doi.org/10.1016/j.energy.2021.119800  

Pesaran, M. H., Shin, Y., & Smith, R. J. (2001). Bounds testing approaches to the analysis of level relationships. Journal of 

Applied Econometrics, 16(3), 289–326. https://doi.org/10.1002/jae.616  

Pham, L., Pham, S., Do, H., Bissoondoyal-Bheenick, E., & Brooks, R. (2025). Common volatility in clean energy stocks. Energy 

Economics, 148. https://doi.org/10.1016/j.eneco.2025.108592  

Qin, Y., Hong, K., Chen, J., & Zhang, Z. (2020). Asymmetric effects of geopolitical risks on energy returns and volatility under 

different market conditions. Energy Economics, 90. https://doi.org/10.1016/j.eneco.2020.104851  

Sadorsky, P. (2012). Correlations and volatility spillovers between oil prices and the stock prices of clean energy and 

technology companies. Energy Economics, 34(1), 248–255. https://doi.org/10.1016/j.eneco.2011.03.006  

Saeed, T., Bouri, E., & Alsulami, H. (2021). Extreme return connectedness and its determinants between clean/green and dirty 

energy investments. Energy Economics, 96. https://doi.org/10.1016/j.eneco.2020.105017  

Wang, M., Ouyang, K., & Jing, P. (2025). Dynamic interplay of energy uncertainty, supply chain disruption, and digital 

transformation on China’s renewable energy stocks. Energy Economics, 141. 

https://doi.org/10.1016/j.eneco.2024.108127  

Yuen, T. H. A., & Yuen, W. K. T. (2024). Public investment on renewable energy R&D Projects: The role of geopolitical risk, 

and economic and political uncertainties. Energy Economics, 138. https://doi.org/10.1016/j.eneco.2024.107837  

Zaier, L. H., Mokni, K., & Ajmi, A. N. (2024). Causality relationships between climate policy uncertainty, renewable energy 

stocks, and oil prices: a mixed-frequency causality analysis. Future Business Journal, 10(1). 

https://doi.org/10.1186/s43093-024-00399-1  

Zhang, L., Liang, C., Huynh, L. D. T., Wang, L., & Damette, O. (2024). Measuring the impact of climate risk on renewable 

energy stock volatility: A case study of G20 economies. Journal of Economic Behaviour and Organization, 223, 168–

184. https://doi.org/10.1016/j.jebo.2024.05.005  

Zhao, X. (2020). Do the stock returns of clean energy corporations respond to oil price shocks and policy uncertainty? Journal 

of Economic Structures, 9(1). https://doi.org/10.1186/s40008-020-00229-x  

https://doi.org/10.1016/j.energy.2021.119800
https://doi.org/10.1002/jae.616
https://doi.org/10.1016/j.eneco.2025.108592
https://doi.org/10.1016/j.eneco.2020.104851
https://doi.org/10.1016/j.eneco.2011.03.006
https://doi.org/10.1016/j.eneco.2020.105017
https://doi.org/10.1016/j.eneco.2024.108127
https://doi.org/10.1016/j.eneco.2024.107837
https://doi.org/10.1186/s43093-024-00399-1
https://doi.org/10.1016/j.jebo.2024.05.005
https://doi.org/10.1186/s40008-020-00229-x

	Persistent Policy Uncertainty and Green Energy Valuation: A Long-Run ARDL Analysis of the CELS Index
	Past research has shown that clean energy indices’ performance often exhibits sluggish adjustment to macroeconomic news and strong downside risk transmission during episodes of financial distress (Gavriilidis, 2021; Ghosh, 2022). The CELS index is an ...
	where: α0: Intercept term, φi: Short-run autoregressive coefficients for lagged RCELS, βj: Short-run coefficients for Brent oil returns, γk: Short-run coefficients for BIS dollar index returns, δl: Short-run coefficients for CPU (climate policy uncert...

