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Abstract:

Artificial intelligence risks are multidimensional in nature, as the same risk scenarios may have legal, operational, and
financial risk dimensions. With the emergence of new Al regulations, the state of the art of artificial intelligence risk
management seems to be highly immature due to upcoming Al regulations. Despite the appearance of several methodologies
and generic criteria, it is rare to find guidelines with real implementation value, considering that the most important issue is
customizing artificial intelligence risk metrics and risk models for specific Al risk scenarios. Furthermore, the financial
departments, legal departments, and government risk compliance teams seem to remain unaware of many technical aspects
of Al systems, in which data scientists, machine learning engineers, and Al engineers emerge as the most appropriate
implementers. It is crucial to decompose the problem of artificial intelligence risk in several dimensions: data protection,
fairness, accuracy, robustness, and information security. Consequently, the main task is developing adequate metrics and risk
models that manage to reduce uncertainty for decision-making in order to take informed decisions concerning the risk
management of Al systems. The purpose of this paper is to orient Al stakeholders about the depths of Al risk management.
Although it is not extremely technical, it requires a basic knowledge of risk management, quantifying uncertainty, the FAIR
model, machine learning, large language models and Al context engineering.

Keywords: Al-VaR; risk management; artificial intelligence; value at risk; risk-based compliance; Al Act; fairness; security.
JEL Classification: C1; C4; K2; D81.

Introduction

Artificial intelligence risk has become a very polemic field of research, considering the rise (and the hype)
of generative Al and agentic Al. All this hype can be traced back to the mainstream appearance of ChatGPT in
November 2022 and the Al Act's publication in July 2024 as the first generic-purpose Al regulation worldwide
(Regulation EU, 2024). However, Al risk management is much older, since it appeared in the 20" century,
connected with the development of predictive analytics and machine learning models. The early Al definitions of
McCarthy (1956) as the science and engineering of making intelligent machines, especially intelligent computer
programs, and Minsky’s (1968) Al definition as the science of making machines do things that would require
intelligence if done by men, anticipated Al as a scientific area of research. In such a sense, machine learning
models became the training methodologies while using datasets as the input.
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The main purpose of traditional supervised models has been solving classification and regression problems
in order to provide a response or a prediction. Later on, deep learning became a subset of machine learning, with
the purpose of using neural networks with several layers and more expensive processing, that could provide a more
robust problem-solving approach. The evolution of deep learning, natural language processing, and especially a
model architecture based on self-supervised learning and transformers (Vaswani, et al. 2017) became the
fundamentals of today’s large language models and large reasoning models. Yet, all traditional machine learning
models are still useful for tasks such as data preparation, fine-tuning, model evaluation, risk calibration, and as
additional resources to train predictive systems in a retrieval-augmented generation environment.

Consequently, Al strongly relies on decision-making, whether it is automated or used as an assistant for
human decision-making. This means that risk management has always been present in the early stages of Al
development, since the goal of risk management is reducing uncertainty for taking informed decisions (Freund &
Jones, 2014). Uncertainty can be classified as aleatoric or epistemic. Aleatoric uncertainty is caused by inherent
randomness and unpredictability in a system (Manokhim, 2023). Epistemic uncertainty arises from the lack of
knowledge or understanding about a system (Manokhim, 2023). From this perspective, data scientists have always
been doing risk management while cleaning up their datasets and while implementing metrics with the aim of
improving an acceptable model performance. Consequently, quantifying uncertainty is not unusual for data
scientists, and they currently use risk calibration strategies based on conformal prediction, ensemble methods,
Bayesian methods, or direct interval estimation for such tasks (Dewolf et al., 2021).

The paradox is that they were rarely trained in risk management guides coming from best practice standards
such as ISO, or Governance Risk Compliance procedures. Data scientists just did it. There are many new Al risk
management frameworks, such as the ISO/IEC 23894, ISO/IEC 42001, ISO/IEC 42005, the NIST Al RMF 1.0, the
NISTIR 83-30, the Cap Al, and so forth. While all of them are useful in different ways, their approach comes from
other areas such as cybersecurity, project management, and legal academics. It feels more like foreigners
designing rules and procedures for local natives that actually do the risk calibration tasks, where the local natives
are the data scientists and the Al engineers.

1. Literature Review

In our days, risk management is a poorly understood area due to a loss of focus on what risk management
is about. For Sidorenko (2017), risk management was born as science, then became an art, and today is just
bullsh@t (2025). Hubbard (2016) classified risk managers into the four horsemen of risk management: the first
three are actuaries, the war quants, and the economists, linked with applied scientific procedures to reduce
uncertainty. Yet, the fourth group consists of consulting managers that have done more bad than good, as it has
distorted what risk management is about, turning it into checklists and paper-based compliance. The problem is
not the alleged best practice standards, as they only provide criteria from a project implementation perspective.
Yet, they don't provide data, significant metrics, and accurate models for informative risk management (Freund &
Jones 2014).

The real issue is that non-trained risk managers are turning Al risk management into a checklist placebo
and, even worse, putting compulsory obligations to apply non-effective qualitative methods, such as heat maps and
symmetric risk matrices (Cox, 2008), to an environment that has natively used quantitative metrics for training,
calibrating, and testing Al models. Just like risk management was born with the actuaries more than 200 years ago
for fulfilling a role that did not exist (SOA, 2008), today we need a new risk manager role for Al, a sort of Al risk
manager that actually knows how to train, calibrate, and test Al systems using applied science, with the aim of
complying with Al legal regulations. Furthermore, this new role shall also develop operational and legal risk
scenarios that require their own risk modelling approach.
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This paper tackles several fundamental dimensions of Al risk: data protection, fairness, accuracy,
robustness, and information security. The methodology used is based on quantitative risk management, consisting
on the following phases:

= Firstly, gathering relevant data. In this paper, the administrative fines collected data correspond to real
cases, but the personal data is synthetic.

= Secondly, developing metrics for risk identification, as a need for establishing trustworthy risk rationales. For
such task, several methods are explained such as conformal prediction, the PERT formula, and the Monte

Carlo analysis.

= Thirdly, designing accurate risk models for artificial intelligence risk scenarios. They are based on the FAIR
model.
= Quarterly, forecasting a return on security investment for risk controls.

2. Modelling Legal Risk: Personal Data Protection and Fairness

Legal risk has two clear perspectives: the risk of violating the fundamental rights of natural persons and the
risk of Al deployers, Al providers, and other stakeholders, to comply with relevant laws, such as the Al Act (EU,
2024). Both risk assessments shall be developed in parallel, as they are interdependent. Recent risk-based legal
frameworks, such as the General Data Protection Regulation (EU, 2016), have made popular the impact
assessment perspective for the protection of the rights and freedoms of natural persons. In the I1A Act, the equivalent
of the Data Protection Impact Assessment is the Fundamental Rights Impact Assessment. However, an impact
assessment is essentially a risk assessment due to two arguments: firstly, the word assessment (ISO, 2023)
concerns the identification, analysis, and evaluation of risks against the fundamental rights of natural persons.
Secondly, the impact is a dimension of risk, that gets completed with the probability of occurrence.

2.1. Personal Data Protection

The first risk assessment shall be related to personal data. Datasets are the training input of an Al system,
where the quality and reliability of the data are essential. Therefore, a logical first Al risk assessment shall be a
Data Protection Impact Assessment concerning two important areas: identifying personal data as an input of the
processing and identifying personal data as an output of the processing. On one hand, personal data shall be
identified when it is used as training input for an Al system. When personal data is necessary for training an Al
system, the audit shall be focused on the legal basis for the data processing. This means, do | have explicit consent?
Do I have clear processing objectives? Do | comply with the exercise of the data subjects’ rights? On the other
hand, personal data shall be leaked as the response of an Al system, especially when Al systems are widely
available through a prompting system. This obligation may be changed soon with the digital omnibus (European
Commission, 2025), if legislators justify the use of personal data for training Al systems as legitimate interest by
default.

Unfortunately, the state of the art of DPIAs is very immature, and we have the risk that FRIAs become as
such, too. The DPIA comes from the Privacy Impact Assessment, a kind of assessment that comes from the 70s
that consists of a description of the data processing activities and risk assessment. However, they mostly became
a checklist placebo far away from an applied-scientific approach. Several authors point out the need for updating
them. Quantifying privacy is still a new field of research, where few authors have modelled it, such as the FAIR-P
model (Cronk & Shapiro, 2022), and a Personal Data Value at Risk approach (Enriquez, 2024). Considering the
difficulty of measuring the material impact that natural persons may have on their rights and freedoms, the
alternative is decoding the sanctioning psychology of data protection authorities, because in the end, they will have
to estimate the impact that natural persons have suffered. This means that a DPIA is important for Al risk
assessment for all that concerns data protection. Data protection risk modelling has been deeply analysed and
modelled in previous works (Enriquez, 2024). Yet, a useful risk ontology for the data protection risk of Al systems
shall be presents in the following Figure 1.

819



Journal of Applied Economic Sciences

Figure 1: A risk model ontology for obtaining the Annual Expected Loss from administrative fines
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For instance, in a sensitive information disclosure risk scenario (OWASP, 2023), the annual risk prediction
interval may be calculated using a top-down approach. However, in order to avoid guessing values, an informative
rationale may rely on a historic analysis of existing administrative fines. Transductive Conformal prediction may be
used to obtain a prediction interval, with @ minimum value, and a maximum value. These values have been
forecasted by analysing data security administrative fines in France, between 2018 and 2024 for a sensitive
information disclosure risk scenario. The prediction interval has been set at the 70% of coverage:

Figure 2: Transductive conformal prediction with a 70% prediction interval, in Euro
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Source: Author

The above Figure 2 shows a correlation between the annual turnover of an enterprise and the administrative
fines received, obtaining a confidence level of 70% based on historical analysis. From all the Al risk dimensions
proposed in this paper, personal data protection is still the only one with real case scenarios, and the application of
a Personal Data Value at Risk approach is convenient. Furthermore, it is also possible to apply a Return on Risk
Investment logic (Albina, 2021), detailed in the following cases.
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Personal data as an input

A typical legal risk scenario is the lawfulness of processing of the data, which consists of assessing the
legality of the personal data used for training. Assessing Al personal data protection risks as an input requires
identifying the personal data included in datasets and then analysing the probability of a regulatory violation and
the magnitude of the impact on the data subjects if the risk materializes. The following example shows a typical
dataset with personal data:

Figure 3: A small dataset with five natural persons

import pandas as pd

df =
"Name " : "Sara", "Peter", "Tony", "Steven", "Lisa"],
"Gender" : "Female", "Male", "Male", "Male", "Female"],
"Age": [20,51,20,20,20],
"Music": ["Metal", "Techno", "Hiphop", "Hiphop", "Metal"],

df = pd.DataFrame(df)
Source: Author

Considering a constant ponderation between privacy and utility, it is highly recommended to evaluate several
pseudonymization methods concerning a particular model (Yermilov et al., 2023). Nevertheless, if the names are
removed, it is necessary to measure the attributes of the identity of a person concerning a particular sample space
(Pierangela & Sweeney, 1998). For instance, if our risk acceptance criteria are a 70% probability of being identified,
and the leaked attributes are the favourite music and the gender, we can proceed to quantify the Return on Security
Investment (ROSI) of this control. Sara and Lisa would have a 60% probability of being identified by her age and
favourite music, therefore, passing the acceptance test. Tony and Steven will also pass the test, as due to their
favourite music attribute (hip-hop), they will have a 60% probability of identification. Nevertheless, Peter will have
a 100% probability of being identified by his music preference (techno). Consequently, if the risk exposure of this
risk scenario is €100 000, the implementation of the control costs €10 000, and the control works for 4 of the 5 five
persons, the efficacy expectancy is 80% (Table 1). Then, the ROSI formula can be applied:

Table 1: The ROSI of a differential privacy control

Risk exposure €100 000
Efficacy 80% (efficacy expectancy = risk solution)
Cost of the security investment €10 000

((Risk exposure * efficacy) - Cost of the risk control) / Cost of the risk control =

ROSI (80 000 — 10 000) / 10 000 = 7 (700%)

Personal data as an output

Itis a very tough task because the response of a prompt-based Al responsive system is not as explainable
as many peers think. When using open-source and open-weight LLMs, sensitive information leaks may become a
third-party risk. However, it can be reduced with privacy-enhancing technologies. Whether the leak comes from the
interaction between the user and the chatbot in Gen Al or from the interaction of Al agents in Agentic Al, the risk of
these kinds of data leaks may be considerably reduced from a post-processing perspective (Krishnan, 2025). The
response of an LLM may be filtered by implementing a post-processing masking or pseudonymization-oriented
code that connects to the Al model from a confidential Al environment.
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Furthermore, personal data may still exist in the RAG and vector databases, but it becomes dependent on
access control policies in the output. The first graphic shows a leak of personal data due to the lack of access
control, and the second one shows an effective control of the data leaked, where the data leaked is already
protected with a masking function.

Figure 4: A prompt-based request for personal data

questions = "' "wWwhat are the names of all the patients in the personal data database?"' """
display{(Markdown{chain.invoke{questions)))

Based on the provided context, the names of the patients mentioned are:

1. Carlos Torres
2. Claudia Pereira
3. Mette Smit

4. Tim Sutherland
5. Jane Bright

Source: Author

Figure 5: A prompt-based request with filtered pipelines

g = "wWhat are the names of all the patients in the personal data database?”
masked answer = masked chain.invoke(q)
print{masked answer)

Based on the provided context, the names of the patients mentioned are:

o O T 200X
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o Txx SO KR HX
o Do B

o Moo Sxoxx

UhbWNM

Source: Author

For instance, let’s consider that in a sensitive information disclosure risk scenario, the mean value in France
between data security non-conformities to the GDPR in a given turnover interval is €853,731, as shown in Figure
2. As the risk control only masks personal data in Spanish language, and the percentage of Spanish named clients
is 80% (Table 2), the ROSI works as follows:

Table 2: ROSI of a masking data for prompting control

Risk exposure €853,731
Efficacy 80% (efficacy expectancy = risk solution)
Cost of the security investment €100,000
ROS| (Risk exposure * efficacy) - Cost of the risk control) / Cost of the risk control
= (682 984 — 100 000) / 100 000 = 5,82 (582%)
2.2. Fairness

When we consider impact assessments as a whole risk management procedure, the tasks get more efficient.
Fairness risk management is a must for decision-making based on Al, whether it is used as an algorithmic decision-
making procedure or as assistance for human decision-making. Likewise, risk calibration becomes the holy grail of
risk management, and for such a task, it is compulsory to understand how to reduce bias and noise in risk
management. Bias is prejudice in favour of someone or something, while noise is about inaccuracy in the decision
estimation (Kahneman et al., 2021). Both circumstances can contaminate the accuracy of a decision-making
process, and therefore, they need to be handled during all the risk management phases: context establishment,
risk identification, risk analysis, risk evaluation, and risk treatment (ISO 27005). Yet, fairness is deeply linked with
bias, and there are several well-known metrics that may help to identify such conditions. An important fact to
consider is that what new Al legal regulations name as algorithm bias, is mostly related to a bias that comes
inherently in the datasets, as datasets may only be a mirror of society’s inequalities.
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Fairness metrics

Most fairness risk scenarios are linked to the right of non-discrimination. However, there usually exists a
default bias that may come by default in the datasets. For instance, let's consider a human resources department
that needs to hire employees (Table 3). The following dataset includes twenty candidates that have a score and
may be used to train the selection system. The numbers ‘0’ and ‘1’ represent the most disfavoured group of natural
persons, while the number ‘2’ represents the most favoured one.

Table 3: A dataset with 20 natural persons with features and a score

Gender Age_Group Nationality
0 Alice 1 2 1 7.56
1 Riley 2 0 0 6.31
2 Jordan 0 2 2 6.47
3 Sophie 1 0 1 5.63
4 Liam 2 2 2 9.82
5 Taylor 1 2 0 6.73
6 Ethan 2 2 2 9.77
7 James 2 0 2 7.23
8 Morgan 0 1 1 5.14
9 Skyler 0 0 0 3.91
10 Henry 1 1 0 4.88
1 Emma 2 2 1 9.01
12 | Noah 1 1 2 7.36
13 | Owen 2 2 2 9.94
14 | Ella 1 0 0 4.19
15 Grace 0 0 0 3.72
16 | Jack 0 2 2 6.91
17 | Mia 1 2 1 7.58
18 | Lucas 2 2 2 9.98
19 Isla 0 2 1 6.45

Source: Author

From the job applicant’s perspective, the risk scenario is not getting the job due to probable discrimination
due to gender, nationality, and age features. The threat community is the human resources department that may
use biased data to train their Al decision-making systems. The vulnerability is the indefensible informative position
of the applicants due to a non-transparent and biased system. The consequence is not getting a job even though
they deserve it. Firstly, we shall apply fairness metrics in order to unveil bias in the dataset. There are several
metrics for fairness; nonetheless, here we will use the equal opportunity difference metric for the nationality feature.
The equal opportunity difference formula is the result of the subtraction between the true positive rates of the
unprivileged group and the true positive rates of the privileged group. The result is -4,167, meaning that the
unprivileged group are 41.67% less likely to receive a positive outcome when they actually qualify.
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Figure 7: Equal Opportunity Difference Metrics for nationality biases

Equal Opportunity - TPR (Privileged - American): &.6667
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Once biases like this one have been detected, the next step is selecting and implementing a risk control that
calibrates the applicants’ vulnerabilities towards a non-discriminative system. Their current disadvantages can be
recalibrated within a fairness risk model scenario by calibrating the vulnerabilities of the discriminated groups and

increasing their options to get hired. For instance, it is feasible to calibrate the nationality by adding the equal
opportunity difference to the unprivileged group.

Table 4: Percentages of natural persons’ nationality within the dataset

EOD-TPR Equal opportunity difference Final Vulnerability score
Privileged = 66% 0 100% - 66% = 34%
Non-privileged = 25% 41% 100% - (25% + 41%) = 34%

In the previous example, Americans are clearly benefited. Nonetheless, the vulnerability score of both
groups is equal. The ROSI can also be calculated, just like it was already shown in the personal data risk dimension.
Whether it is about inherent risk analysis or residual risk analysis, a good option is developing a risk ontology (just
like the classic FAIR model ontology) within a biased ranking algorithms risk scenario, where the vulnerability factor
can be calibrated in order to benefit the conditions of specific disadvantaged groups of natural persons.

Figure 8: A risk scenario of biased ranking algorithms from an Al users’ perspective
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Here we have to calibrate two different percentages of vulnerabilities, one for Americans and another one
for non-Americans. From here, we could apply different procedures to get the F-VaR such as the PERT formula:
a+4b+c/6 (Mirkovi¢, 2020), or using a Monte Carlo simulation (Freund & Jones, 2014), with the goal of getting an
accurate prediction interval. Quantifying fairness is somehow a new domain, but recently research has shown the
link with fairness and the financial domain, such as the use of cooperative game theory and SHAP analysis methods
(Chan et al., 2025). Nonetheless, constructing the rationale of fairness is easier by profiling the authorities’
sanctioning psychology (Lawlor, 1963).

Since there are no administrative fines’ precedents in the fairness risk domain, conformal prediction would
not be an option. A compliance-focused model ontology from an Al provider's and Al deployer’s perspective may
be based on a Fairness Value at Risk (F-VaR), as National Competent Al Authorities will have to estimate the
amount of damage to the fundamental rights of natural persons in each fairness violation (Enriquez, 2024). For
instance, in order to implement a Fundamental Rights Impact assessment (FRIA) on fairess risk scenarios, it is
possible to analyse the previous nationality discrimination risk scenario. The values may be: TEF = min: 2, most
likely: 5, max: 8. The vulnerability of non-privileged groups may be set at Vuln: min: 40%, most likely: 66%, max:
90%. The PL = min: $100,000, most likely: $200,000, max: $400,000. The SL = min: $500,000, most likely:
$1,000,000, max: $2,000,000. Figure 8 shows the annual fairness value at risk of this nationality scenario, with the
10t percentile as the lower limit and the 90th percentile as the upper limit, representing an 80% confidence interval.
Within this interval, a value corresponding to the 95th percentile can be used to express a high-confidence estimate
of potential loss.

Figure 8: An annual loss expectancy and its artificial intelligence value at risk in the fairness dimension
Source: Author
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4. Modelling Operational Risk: Accuracy and Robustness

In the context of the Al Act, accuracy and robustness are defined in the Al Act as relevant performance
metrics (EU 2024). Accuracy is understood as the acceptable prediction intervals of an Al system. Robustness is
understood as safety performance measures. As performance metrics, they are transversal for many risk scenarios.
Accuracy and robustness error metrics are crucial in order to measure Al prediction capabilities (Floridi et al., 2022).
There are several metrics used in classification, multi-classification, and regression problems. Classification metrics
are usually based on the number of true positives, false positives, true negatives, and false negatives.

For instance, well-known metrics for classification are: accuracy, precision, recall, faithfulness, and so on.
Common regression metrics are Root Mean Squared Error (RMSE) Mean Absolute Error (MAE), and so on. While
LLMs use next-token prediction metrics (Ouyang, et al., 2022), LLMs are trained with classification-style objectives,
and regression losses are useful in fine-tuning or auxiliary tasks. This means that classification and regression
metrics are fundamental for simple predictive models and complex Al systems. For instance, let's consider a data
poisoning risk scenario that can lead to Al backdoor errors and increase the risk of hallucinations. The threat
community could be a group of cybercriminals with access to the Al system who can poison the training data of
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patients with a probability of cancer. The vulnerability could be the lack of security access controls of the 1A
deployer. The consequence of the system’s Al users may be the probable wrong answers that produce financial
and psychological impact on potential cancer patients. The consequence of the Al provider and the Al provider may
be the financial losses.

4.1. Classification

The following synthetic dataset includes ten patients, where the features are age, genetics, habits, and has
cancer as the classification response, where the risk acceptance threshold is 50%. This means that patients below
the threshold are labelled with ‘0’ or no cancer, and patients with more than 50% are labelled as patients with a
considerable probability of getting cancer.

Figure 9: The predictions of 10 natural persons with 3 features and the probability of getting cancer
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Person 4 - Age: 48.8, Genetics: ©.4, Habits: 8.5 == Predicted: 1, Probability: 63.81%
Person 5 - Age: 45.8, Genetics: .6, Habits: ®.4 == Predicted: 1, Probability: 71.84%
Person 6 - Age: 56.0, Genetics: .7, Habits: 8.6 => Predicted: 1, Probability: 78.50%
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The logistic regression model can provide the probability of each patient, despite the fact of being classified
in two groups. The following Figure 10 shows the results of accuracy, precision, and recall metrics:

Figure 10: Accuracy, precision, and recall metrics

Classification Metrics

1.00

Score

Precision

Source: Author
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In fact, this is a very conservative dataset, with only real cases, where the 3 testing observations are two
true positives, and one false positive. Nevertheless, this is not enough, as risk management shall pursue accuracy
and not precision. The most important issue is to implement conformity metrics with the aim of getting a trustworthy
prediction interval for new cases. Again, conformal prediction becomes a very useful method to obtain an accurate
prediction interval based on historical analysis of patients that had cancer. The first figure shows a 100-patient
dataset with an accuracy of 0.61 with a distributed split of 60% for training, 20% for calibration, and 20% for testing.
The second figure shows the same 100 patient dataset but with 60% for training, 30% for calibration, and 10% for
testing. Increasing the calibration data split is a risk control that has helped to increase the accuracy.

Figure 11: Comparing accuracy after a calibration risk control
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With such results it can be assumed that the ROSI will increase as accuracy has increased in a 29%.
However, a more informative result would be understanding the accuracy of other features (such as Genetics with
habits), and implementing other metrics.

4.2. Regression

In an adversarial machine learning risk scenario of data poisoning, implementing a linear regression model
with the RMSE metrics can provide good information about the predicted breach cost vs. the actual breach cost.
The following historical dataset includes the average of data poisoning losses in the previous year. For instance, in
a dataset of ten observations (Table 5), seven have been used for training and three for testing.

Table 5: Cost components associated with security breaches

Index Productivity Loss Reputation Damage Administrative Fine Breach Cost
0 20,000 10,000 4,000 52,000
1 22,000 12,000 4,500 73,000
2 24,000 9,000 5,000 76,000
3 28,000 20,000 8,000 119,000
4 30,000 25,000 8,500 151,000
5 33,000 30,000 9,000 181,000
6 35,000 28,000 9,500 203,000
7 40,000 35,000 10,000 237,000
8 45,000 40,000 11,000 283,000
9 50,000 45,000 12,000 318,000

The difference between the actual and the predicted results can be measured with the residuals (Figure 12).
In this case, they are acceptable.
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Figure 12: Comparison between actual and predicted administrative fines
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However, in a data poisoning risk scenario, the predicted values can be manipulated as a result of calculating
over tampered data. A convenient robustness risk control may be an anomaly detection system. Just like accuracy,
robustness controls are also important when the risk scenarios are linked with consumer protection, civil law, or
even criminal law. The following example shows the tampered results of a linear regression model after a data
poisoning attack that arbitrarily modified 10% of the predicted values and how an anomaly detection system risk
control with a threshold of 4,000 can detect the predicted values that have exceeded it.

Figure 13: Comparison between actual and predicted administrative fines
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The risk model would be similar to the ones already presented in the personal data and fairness risk
ontologies. Likewise, the ROSI can also be estimated as it was previously shown. Nonetheless, they could also be
used only as resistance strength. The logic behind this assumption is logical and pragmatic; if the model has better
accuracy and is robust enough, it becomes a very important resistance strength control.

5. Modelling Information Security: Integrating Personal Data Protection, Fairness, Accuracy and Robustness

Once we get the output of data protection, fairness, accuracy, and robustness assessments, it is very
convenient to integrate them into a single operational information security risk model. The FAIR model is ideal for
information security risk scenarios related to artificial intelligence, such as Al hallucinations (Maleki et al., 2024)
and adversarial machine learning (McCarthy et al., 2023). The trick is integrating personal data protection,
accuracy, robustness, and fairness in the right factors, while decomposing the risk scenario problem.
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Personal data

Its Personal data Value at Risk shall be calculated in its own risk ontology. The rationale of a personal data
value at risk is based on an intelligence assessment about the sanctioning psychology of the data protection
authority, and the maturity level of data protection compliance (such as GDPR compliance). The logic of the
Jurimetrical Pd-VaR (Enriquez, 2024) relies on a historical analysis of the judges or administrative authorities in
order to solve the difficulty of calibrating the material impact of a data protection risk on the rights and freedoms of
the data subjects. Instead of blindly guessing such impact, a very useful alternative is understanding the sanctioning
psychology of the Data Protection Authority by using qualitative and quantitative information and argument retrieval
analytical methods and adding the results as a secondary loss within an information security risk scenario linked to
Al. The jurimetrical Pd-VaR is then complemented with the calibrated Pd-VaR, which is about the internal risk-
based compliance maturity of the controller.

Fairness

It can also be calculated in an independent model ontology, and the output of the loss can be integrated as
a secondary loss within the FAIR model. In the near future, we may also get fairess-related data coming from
existing administrative fines issued by National Al authorities. Quantitative information and argument retrieval
analytical methods may also be applied in order to calibrate a Fairmess Value at Risk (F-VaR). The logic behind it
relies on the difficulty of calibrating the loss of Al users, following the logic behind a Personal Data Value at Risk
previously explained.

Accuracy and robustness

Even though that could also become part of the secondary risks related to fines and judgments, in the
following case they will be only part of the resistance strength factor. They are integrated as resilience strength
because their purpose is the good function and redundancy of the system that helps mitigate the risk of harm
against the fundamental rights of natural persons. These factors shall be weighed, combining them with the
resilience level of the risk controls that shall provide protection from a threat community trying to compromise the
system. In a nutshell, a bad accuracy and robustness assessment within the model would result in harm to the Al
users, just like a black hat hacker threat community may exploit vulnerabilities of confidentiality, integrity, and
availability controls. Therefore, in consumer protection legal risk scenarios, they may also become part of the fines
and judgments’ secondary losses factor.

Information security

It may be convenient in many risk scenarios to combine the data protection, fairness, accuracy, and
robustness rationales into an information security model. For instance, let’s consider data poisoning combined with
a biased algorithm ranking risk scenario. The protected asset is confidential data in CSV format, stored in a
confidential RAG environment. The threat community are cybercriminals. The purpose of the attack is changing the
weights of a decision-making process in order to favour men over women. Despite that this risk scenario is about
fairness, it has the four risk perspectives as are presented in following Table 6:

Table 6: A description of each Al risk regulatory dimension
Dimension Description

Confidential data of natural persons will be accessed by the attacker without
authorization (GDPR, articles 5(f), 32).

Fairness risk The candidates’ selection process will be biased (Al Act, article 10 (2) (f), 10 (2) (g)).

Data protection risk:

Even though the classification metrics are properly applied, the result of the selection

A d robust isk
CeLracy and robusiness ris will be wrong because data was contaminated (Al Act, article 15 (1) (2) (3)).

Information security risk A security policy has been violated, as access controls failed. (Al Act, article 15 (4) (5)).
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6. Artificial Intelligence Value at Risk (Al-VaR)

These Al risk dimensions can be included in a classic FAIR model, and the predicted interval will provide
the input of an Al-VaR. To make it simple, it will only include productivity as a Primary Loss, and fines and judgments
as a Secondary Loss, with the average of a Personal Data Value at Risk and a Fairness Value at Risk. The
resistance strength factor will have two sources: information security controls that may fail because the access
controls are not good enough, while the accuracy and robustness of the Al system may fail due to the lack of model
performance checking controls. In this example, they will be included with the following input values presented in
Table 7:

Table 7: Input values

Values MIN Most Likely Max

Threat Event frequency: Min=1; Most Likely = 5; Max = 10.
Threat Capability: Min = 20%,; Most Likely = 50%; Max = 80%.
Resistance Strength Min: 10%; Most Likely = 20%; Max = 30%.
Primary Loss (Productivity) Min = $1000 Most Likely = $4000 Max = $8000.
Secondary Loss Frequency (Fines and Judgments) | Min=60%; Most Likely = 80%; Max= 100%.
Secondary Loss Magnitude Min = $4000 Most Likely = $8000 Max = $14000

Figure 14: A risk scenario of data poisoning and biased ranking algorithms (classic FAIR model)
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From this model, we can implement the PERT formula and a Monte Carlo analysis with 1,000 simulations,
both with the aim of getting an accurate annual loss exposure (ALE). It is possible to ping the distribution at certain
percentiles with the aim of setting limits. For obtaining an Al-VaR, it is necessary to set a prediction interval. Since
the previous raw distribution is unstable around the low and high limits, the most convenient way to implement the
VaR is an adjusted version of a Value at Risk with truncated quantiles. It may be called a Conditional value at Risk,
but the CvaR approach has been designed only for the worst losses (Rockefellar et al. 2022). In the following
example, the lowest limit has been set at the 10t percentile and the highest limit at the 90 percentile of the raw
distribution. The result shows the worst annual loss of $81 262, at the 95t confidence level within a chosen interval
between the p10t and the p90th.
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Figure 15: A Monte Carlo analysis and raw distribution
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Conclusion

This paper has explored the creation of meaningful metrics and adequate models for Al risk scenarios from
several risk perspectives: personal data protection, fairness, accuracy, robustness, and information security.
Personal data protection metrics are fundamental to comply with frameworks such as the GDPR in the field of Al
systems, focusing the analysis in two controversial spots: personal data as an input and personal data as an output.
Fairness metrics are essential to reduce bias conditions within the datasets, where the vulnerability factor in the
model ontology helps to compensate the disadvantaged Al users. Accuracy and robustness metrics are essential
for the right performance of an Al system, as a bad Al system performance may also threaten the fundamental
rights of natural persons. Finally, information security scenarios have been presented as the holy grail for Al risk
integration, as without information security, Al systems will certainly fail.

The integration of these four kinds of Al metrics in an information security risk scenario becomes a very
challenging but feasible task. Conformal prediction is a reliable method to obtain rationales when reliable historical
data is available, and it has been shown how it can be used for the Personal Data Value at Risk. The goal of this
approach is to first solve the data protection and fairness values at risk, as secondary losses, by using legal
predictive analytics in order to understand the sanctioning psychology of the Al National Competent Authorities.
When historical data is not available, other methods can be used such as the PERT formula and the Monte Carlo
analysis. Then, it was shown how to assess the accuracy and robustness assessments in order to combine them
in a holistic operational risk scenario, where the loss due to the bad performance of the Al system shall be integrated
as resistance strength and sometimes as a potential secondary loss. Yet, in several cases, it would be necessary
to model data protection, accuracy, robustness, and fairess in their own risk ontologies in order to export their
output into an information security risk scenario. As an experimental work, the aim of this paper has been to show
how Al metrics and models can be implemented in order to comply with new best practice standards, Al
governance, and Al legal frameworks.
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