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Abstract 

Due to the complexity and uncertainty involved in real world decision problems, the determination and interpretation of Decision 
Makers' preference relations remain a challenging task for them. This paper develops a novel procedure for incorporating 
preference information in the efficiency analysis of Decision Making Units. The efficiency of Decision Making Units is defined 
in the spirit of Data Envelopment Analysis, complemented with Decision Maker's preference information. Our procedure begins 
by aiding the different decision making group members to express their incomplete fuzzy preferences by using a multiple 
objective linear programming approach for generating a common set of weights in the DEA framework. 
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Introduction 

The research area of multiple criteria decision analysis (MCDA) is developed to provide decision aids for complex 
decision situations. MCDA aims to furnish a set of decision analysis techniques to help decision makers (DMs) that 
logically identify, compare, and evaluate alternatives according to diversity, usually conflicting, criteria arising from 
social, economic, and environmental considerations (Ben-Tal and Nemirovsky 1999, Belton and Stewart 2002, 
Chen, Kilgour and Hipel 2002) 

Multiple criteria decision analysis has been studied for helping decision makers to make their final decisions 
in MCDM (Multiple Criteria Decision Making) problems. One of the main tasks in this research is how to incorporate 
value judgments of decision makers in decision support systems. If decision makers can make their decisions by 
seeing efficiencies (or inefficiencies) of alternatives, the idea of DEA (Data Envelopment Analysis) can be applied 
to MCDM problems. Data envelopment analysis (DEA) is an increasingly popular managerial decision tool that was 
initially proposed by Charnes, Cooper and Rhodes (1978). As a nonparametric method for estimating production 
frontiers, DEA measures relative performance of a set of producers or decision making units where the presence 
of multiple inputs and outputs makes comparisons difficult. A comprehensive survey of DEA research covering its 
30 years of history (1978-2008) is presented in Emrouznejad, Parker and Tavares (2007). 

Data Envelopment Analysis (DEA) uses the best favorable weight set for the inputs and outputs of each 
decision-making unit (DMU) to obtain its best possible score. However, current DEA models are difficult to 
discriminate decision-making units through articulating the decision makers' preferences Banker 1980). 

Fuzzy set theory might provide the flexibility needed to represent the uncertainty resulting from the lack of 
knowledge. There exist numerous opportunities to apply fuzzy sets theory in decision making. Numerous authors 
have significantly contributed with their works to a better understanding of group decision making or social choice 
theory and fuzzy multiple criteria decision making theory (Xu 2003) 

This paper puts forward a fuzzy Goal Programming approach which is both practical and intellectually 
compatible with the DEA philosophy. We develop a procedure for incorporating fuzzy incomplete preference 
information in a novel way in the efficiency analysis of DMU by aiding the Decision Makers in using fuzzy incomplete 
terms instead of numerical values in order to express their fuzzy incomplete preferences. 

The remaining part of this paper is planned as follows: the next section highlights motivations of 
incorporating value judgments in DEA models, and reviews some existing approaches; we further discuss the 
approaches related to weights restrictions. In section 2, we propose a new fuzzy DEA/Goal Programming method 
which allows group members to express their fuzzy incomplete preferences. In section 3 we will illustrate our 
formulation through a numerical example. Some concluding remarks will be formulated within last section. 
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1. Incorporation of Value Judgments in Data Envelopment Analysis Models 
Charnes et al. (1978) present a description of a mathematical programming formulation (CCR model) for the 
empirical evaluation of relative efficiency of a DMU. This presentation rests mainly on the observed quantities of 
inputs and outputs for a group of similar referent DMU. Banker et al. (1984) provided a formal link between DEA 
and estimation of efficient production frontiers via constructs used in production economics.  

A major feature of the ratio formulation of CCR model is the reduction of multiple outputs as well as multiple 
inputs for each DMU into a single ‘virtual’ output and single ‘virtual’ input. This ratio allows for an efficiency 
measurement of each DMU. Indeed, this ratio is maximized by forming an objective function for a particular DMU 
which we are going to refer to as DMU0.  

Provided that input savings lend themselves to estimation in practical applications, DMU managers have to 
deal with some inputs such as the level of advertising, median income in service area, number of competitors that 
are out of control. In such cases, data about the extent to which an exogenously fixed input variable may be reduced 
holds little interest for the DMU manager.  

It is imperative that we further extend the DEA models in order to estimate the extent to which the controllable 
or discretionary inputs can be reduced by the DMU manager while keeping the exogenously fixed inputs at their 
current level. Banker (1980) specified explicit postulates, such as convexity and monotonicity, for the underlying 
production possibility set employed for estimating the relative efficiency of individual DMUs. This characterization 
of the production possibility set will be adopted in order to estimate the relative efficiencies when some of the inputs 
elude control. By the way, this is one of the DEA model restrictions which are regarding the weights fixation of the 
inputs and outputs. 

Thereby, Pedraja-Chaparro et al. (1997) revealed significant variations in the coefficients from year to year 
even when the basic input-output data are supplied in constant values. It appears that only a minor fraction of the 
variations may be attributable to technological change. 

Sinuany-Stern and Friedman (1998) developed a new method which provides for given inputs and outputs 
the best common weights for all the units that discriminate optimally between the efficient and inefficient units as 
given by the DEA. Their approach allows ranking all the units on the same scale. This new method, Discriminant 
Data Envelopment Analysis of Ratios (DR/DEA), presents a further post-optimality analysis of DEA for 
organizational units when their multiple inputs and outputs are given. They construct the ratio between the 
composite output and the composite input, where their common weights are computed by a new non-linear 
optimization of goodness of separation between the two groups. 

Roll et al. (1991) argued that DEA is a mathematical programming approach to assessing relative 
efficiencies within a group of Decision Making Units (DMUs). An important outcome of such an analysis is a set of 
virtual multipliers or weights accorded to each (input or output) factor considered. These sets of weights are, 
typically, different for each of the participating DMUs. A constrained version of the DEA model is offered where 
bounds are imposed on weights, reducing, thus, the variation of the importance accorded to the same factor by the 
various DMUs.  

Pedraja-Chaparro, Salinas-Jimenez and Smith (1998) study the role that weight restrictions play in DEA. 
Arguably, the decision to include a factor (input or output) in a DEA model represents an implicit judgment that the 
factor has a non-trivial weight. For that reason, it seems perverse to allow DEA to assign a trivial weight to that 
factor in assessing the efficiency of a unit. As a result, there is a strong reason for imposing restrictions on factor 
weights. Conversely, many existing methods of weight restriction are in practice unwieldy. Due to the complexity 
and uncertainty involved in real world decision problems, the determination and interpretation of the weights given 
to the output remain a challenging task for the decision makers. 
2. Determination of the Fuzzy Weight Given to the Output 
Refers to Charnes et al. (1978), the CCR formulation developed to evaluate the technical (output) efficiency 
measure for a DMU target is given by the following linear programming sets:  
Max Z0 = ф 
Subject to: ф. Y0 - Y.W + s+   = 0             (1) 

X W + s- = X0  and W, s+ , s- ≥ 0. 
where: φ  represents the efficiency measure in the output-oriented CCR model. It is calculated by running the 

above linear programming algorithm once for each firm in the sample. If 1φ = , firms are considered 
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efficient, while if 1φ <  firms are considered inefficient and φ  measures how much each output should 
be expanded for every firm to be considered technically efficient; X is the input matrix used by all firms in 
the sample; Y is the output matrix produced by all the firms in the sample; X0  is the input vector 
consumed by the DMU0 to produce Y0; s+ and s- denote the output and input slacks vectors respectively. 
These slacks allow a handling reduction and an increase in inputs or outputs to reach the boundary of a 
production frontier; W is the weighting vectors of an evaluated DMU0.  

These weights (W vector) reflect the DM’s preferences. As it is known, decision making is a basic human 
activity, in which most decision processes are based on preference relations. Up to now, some studies dealt with 
the DM’s preference where the parameters are usually subjectively fixed and considered as crisp values (Foroughi 
and Aouni 2012, Pedraja-Chaparro, Salinas-Jimenez and Smith 1997) 

In some practical situations, due to either the vague nature of human judgment, high order of the preference 
relation presented by multiple decision makers, the DMs may obtain some preference relations with entries being 
fuzzy. Also, and sometimes, because of time pressure, lack of knowledge, and the DM’s limited expertise related 
with the decision making problem, the DMs may develop an incomplete fuzzy preference relation in which some of 
the elements cannot be provided. In this paper, we use the goal programming method to reflect the decision making 
preferences in the process of assessing efficiency, such that several incomplete fuzzy preference relations of the 
decision maker are considered. Therefore, in order to elucidate these preferences, we put forward the following 
definitions. 
Definition 1:  

Let ( ) mmjkdd lL ×=  be a preference relation, and then L is called an incomplete fuzzy preference relation, if 

some of its elements cannot be given by the decision maker d, which we denote by the unknown number ( )π , and 
the others can be provided by the DM, which satisfy (Chen, Kilgour and Hipel 2011) 

[ ]1,0∈jkdl                     (2) 

1=+ kjdjkd ll ;, Mkj ∈∀  ;Dd ∈∀                 (3) 

5.0=jjdl                     (4) 

where jkdl  Represents the preference degree provided by the decision maker d. 

Definition 2:  

Let ( ) mmjkdd lL ×= be an incomplete fuzzy preference relation, then L is called an additive consistent 
incomplete fuzzy preference relation, if all the known elements of L satisfy the additive transitivity: 

5.0+−= kzdjzdjkd lll ;,, Mzkj ∈∀  ;Dd ∈∀                (5) 

For the convenience of computation, we construct an indication matrix ( )
mmjkd ×

=Δ ς of the incomplete fuzzy 

preference relation ( )
mmjkdd lL
×

= , where: 
 

                                                           0           
Si            jkdl =π

    

                                          =jkdς                                                                                                                          (6) 
  

;,, Mkj ∈∀ ;Dd ∈∀                    1       
Si

           jkdl ≠π  
 
Let ( )TmwwwW ,..., 21= be the weights vector of the incomplete fuzzy preference relation ( )

mmjkdd lL
×

= , 
where:  
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1
1

=∑
=

m

j
jw      ;,...,2,1 mj =∀         0≥jw                (7) 

If ( )
mmjkdd lL
×

= is an additive consistent incomplete fuzzy preference relation, then such a preference relation 
must satisfy (Xu, Da and Liu 2009): 

( ) ⎥⎦

⎤
⎢⎣

⎡ +−= 5.0
2

)( kjjkdjkdjkd wwml ςς ;,, Mkj ∈∀ ;Dd ∈∀                (8) 

However, in the general case, eq. (8) does not hold. Refers to (Xu, Da and Liu 2009), we shall relax eq. (8) by 
looking for the weights vector of the incomplete fuzzy preference relation ( )

mmjkdd lL
×

= that approximates eq. (8) 
by minimizing the error 	ε#$%, where: 

 
 

DdMkj ∈∀∈∀ ;;,,                         (9) 
 

Thus, we can construct the following multi-objective programming model: 

( ) 5.0
2

min −−−= kjjkdjkdjkd wwmlςε         ;,, Mkj ∈∀ ;Dd ∈∀  

S/C:                  (10) 

1
1

=∑
=

m

j
jw      ;,...,2,1 mj =∀  0≥jw  

The problem of finding a weights vector can also be formulated as the following programming model: 

( ) 5.0
2

min
1 ,11

−−−=∑ ∑∑
= ≠==

kjjkdjkd

m

j

m

jkk

D

d
wwmlς ;,, Mkj ∈∀ ;Dd ∈∀  

S/C:                   (11) 

1
1

=∑
=

m

j
jw      ;,...,2,1 mj =∀  0≥jw . 

Solution to the above minimization problem is found by solving the following goal programming model: 

( )−+ + jkdjkdMinimiser δδ  
S/C                                                                                                                                                                        (12) 

( ) +− −=⎥⎦

⎤
⎢⎣

⎡ −−− jkdjkdkjjkdjkd wwml δδς 5.0
2      ;,, Mkj ∈∀   j∀ ≠k; ;Dd ∈∀  

1
1

=∑
=

m

j
jw      ;,...,2,1 mj =∀  

1
1

=∑
=

m

j
jw  

0, ≥−+
jkdjkd δδ ;,, Mkj ∈∀  

The model (eq. 12) can be approached with the following fuzzy multiple objective programming model: 

( ) ( ) 5.0
2

5.0
2

−−−=⎥⎦

⎤
⎢⎣

⎡ +−−= kjjkdjkdkjjkdjkdjkdjkd wwmlwwml ςςςε
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λMax
                                                                                                  

 
S/C:                   (13) 

λδδ ≥−− +− )(1 jkdjkd  

( ) +− −=⎥⎦

⎤
⎢⎣

⎡ −−− jkdjkdkjjkdjkd wwml δδς 5.0
2      ;,, Mkj ∈∀    j∀ ≠k ; ;Dd ∈∀  

1
1

=∑
=

m

j
jw      ;,...,2,1 mj =∀  0≥jw  

0, ≥−+
jkdjkd δδ ;,, Mkj ∈∀ ;Dd ∈∀  

The weight vector ( )TmwwwW ,..., 21= of the incomplete fuzzy preference relation ( )
mmjkdd lL
×

= can be 
obtained by solving the mathematical model (eq. 13). 

Each decision maker d who is a member of the group decision making provides fuzzy incomplete 
preferences instead of precise preferences for a pairwise comparison matrix ld (for example in the case that we 
consider 3 DMUs): 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

5.0.0
5.0

5.0

3231

2321

1312

d

dd

d

d

ll
ll
ll

l

                (14)

 

where: l12d represents the preference degree of DMU1 to DMU2, the degree is provided by the decision maker d. 
Combining models (eq. 1) and (eq. 13) will result to a fuzzy DEA GP model that integrates explicitly the 

fuzzy preference of the FDM, as follows: 

[ ]λφ +Max
                                                                                                  

 
S/C:                            (15) 
ф. Y0 - Y.W + s+  = 0 

X W + s- = X0                 s+ , s- ≥ 0 

λδδ ≥−− +− )(1 jkdjkd  

( ) +− −=⎥⎦

⎤
⎢⎣

⎡ −−− jkdjkdkjjkdjkd wwml δδς 5.0
2   ;,, Mkj ∈∀    j∀ ≠k ; ;Dd ∈∀  

1
1

=∑
=

m

j
jw      ;,...,2,1 mj =∀  

0≥jw  

0, ≥−+
jkdjkd δδ ;,, Mkj ∈∀ ;Dd ∈∀  

The software LINGO package can be used to solve program (15).  
3. Numerical Example 
In this section, a numerical example will be utilized to illustrate the application of the developed model. Suppose 
that we consider the case of three decision maker who have given their preferences on the three DMUs in three 
different formats, i.e.: 
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⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

=

5.07.01
3.05.04.0

6.05.0

1

π

π

l

  ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

5.06.06.0
4.05.05.0
4.05.05.0

2l

  ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−=

5.05.07.0
5.05.01
3.05.0

3 π

π

l

 
Concluding Remarks 
In this paper, the procedure for incorporating fuzzy preference information is proposed for evaluating the efficiency 
analysis of Decision Making Units. The obtained efficiencies are fuzzy numbers to reflect the inherent fuzziness in 
evaluation problems by aiding the Decision Makers in using incomplete fuzzy preferences relations instead of 
numerical values in order to express their fuzzy preferences. 
References 
[1] Banker, R.D. 1980. Studies in Cost Allocation and Efficiency Evaluation. Unpublished doctoral thesis. Harvard 

University, Graduate School of Business Administration. Also available from University Microfilms International, 
Ann Arbor, Mich., 1981. 

[2] Banker, R.D., Charnes, A. and Cooper, W.W. 1984. Some models for estimating technical and scale 
inefficiencies in Data Envelopment Analysis, Management Science, 30(9): 1078-1092. 
https://www.jstor.org/stable/2631725  

[3] Belton, V. and Stewart, T.J. 2002. Multiple Criteria Decision Analysis: An Integrated Approach, Kluwer 
Academic Publisher, 372 p. ISBN-13: 978-0792375050 

[4] Ben-Tal, A. and Nemirovsky, A. 1999. Robust solutions to uncertain programs, Operation Research Letters, 
25(1): 1-13. https://doi.org/10.1016/S0167-6377(99)00016-4 

[5] Chen, Y., Kilgour, D.M. and Hipel, K.W. 2011. An extreme-distance approach to multiple criteria ranking, 
Mathematical and Computer Modelling, 53(5-6): 646-658. https://doi.org/10.1016/j.mcm.2010.10.001 

[6] Charnes, A., Cooper, W.W. and Rhodes, E. 1978. Measuring the inefficiency of decision making units, 
European Journal of Operational Research, 2(6): 429-444. https://doi.org/10.1016/0377-2217(78)90138-8 

[7] Emrouznejad, A., Parker, B.R. and Tavares, G. 2007. Evaluation of research in efficiency and productivity: A 
survey and analysis of the first 30 years of scholarly literature in DEA, Socio-Economic Planning Sciences, 
42(3): 151-157. DOI: 10.1016/j.seps.2007.07.002  

[8] Foroughi, A.A. and Aouni, B. 2012. Ranking units in DEA based on efficiency intervals and decision-maker's 
preferences, International Transactions in Operational Research, 19: 567-579. https://doi.org/10.1111/j.1475-
3995.2011.00834.x 

[9] Pedraja-Chaparro, F., Salinas-Jimenez, J., and Smith, P. 1997. On the role of weight restrictions in data envelopment 
analysis. Journal of Productivity Analysis, 8(2): 215–230. http://www.jstor.org/stable/41770537  

[10] Roll, Y., Cook, D.W. and Golany, B. 1991. Controlling Factor Weights in Data Envelopment Analysis, IIE 
Transactions, 23(1): 2-9. DOI: 10.1080/07408179108963835  

[11] Sinuany-Stern, Z., Friedman, L. 1998. DEA and the discriminant analysis of ratios for ranking units, European 
Journal of Operational Research, 111(3): 470–478. https://doi.org/10.1016/S0377-2217(97)00313-5 

[12] Xu, Y., Da, Q. and Liu, L. 2009. Normalizing rank aggregation method for priority of a fuzzy preference relation 
and its effectiveness, International Journal of Approximate Reasoning, 50(8): 1287–1297. 
https://doi.org/10.1016/j.ijar.2009.06.008 

[13] Xu, Z.S. 2004. Goal programming models for obtaining the priority vector of incomplete fuzzy preference 
relation, International Journal of Approximate Reasoning, 36: 261–270. 

[14] Xu, Z.S. 2003. Two methods for ranking alternatives in group decision-making with different preference 
information, Information: An International Journal, 6: 389–394. 


