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From the Author 

This book was prepared by the author, who saw the importance of econometric 

principles, which have played an essential role in explaining their significance in academics and 

can be applied in various circles. It may or may not be related to economics; this book can be 

opened the world of analytics. 

Introductory and advanced econometrics are two levels of study within the field of 

econometrics, which focuses on the application of statistical and mathematical methods to 

analyze economic data. Main key topics are covered by the two parts of this book: 

Part I. Introductory and Advanced Econometrics 

▪ Introduction 

▪ Regression Model 

▪ Univariate Time Series: Linear Models 

▪ Stationarity and Unit Roots Tests 

▪ Univariate Time Series: Volatility Models 

▪ Multivariate Time Series Analysis 

▪ Multivariate GARCH models. 

Part II. Econometrics Tools Application for Cases Studies of Tourism and Financial Economics 

This part of the book applies principles in econometrics derived from all before seven chapters 

from Part I, in tourism and financial economics. The author has published research papers in 

scientific journals and updated the information to suit changing times. The author has used the 

program EVIEWS to analyze and can read more manuals at www.eviews.com. Some people 

may find it difficult because they do not understand how to use it. This book can help you to 

understand it. 

▪ Tourist Demand Using VECM and Cointegration; 

▪ Modelling the Growth Rate and Volatility in International Tourist Arrivals; 

▪ Volatility transmission, Comovements, and Spillovers Models with applications to 

Financial Economics. 

Moreover, this book is intended for undergraduate and graduate-level students, 

including researchers interested in economic analysis. Econometric tools can be applied to real 

situations. The econometric tools range from essential to advanced levels, including writing 

http://www.eviews.com/
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explanations, testing economic theory, forecasting, and making policy recommendations. 

Emphasis is placed on financial and tourism economics. 

However, this book was made possible thanks to RITHA Publishing, allowing the author 

to follow his dreams. I thank my advisor during my doctoral studies, including my colleagues 

and students who have completed this book. This book will be helpful and can be used for 

further development and benefit the reader the next.  

Finally, thanks to the contributors who contributed to the successful implementation of this book. 
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PART I - Introductory and Advanced Econometrics 

Chapter 1 Introduction in Econometrics 
   
Chapter 2 Regression Model 
  
Chapter 3 Univariate Time Series: Linear Models 
  
Chapter 4 Stationarity and Unit Roots Tests 
  
Chapter 5 Univariate Time Series: Volatility Models 
  
Chapter 6 Multivariate Time Series Analysis 
  
Chapter 7 Multivariate GARCH Models 

 

In this Part I, there are 7 chapters which focus lies in comprehending the essence of 
econometrics, ranging from its fundamental principles to its more sophisticated facets. The 
overarching aim is to equip readers with the understanding needed to effectively apply 
econometric techniques for prediction and analysis. Through this comprehensive journey, 
readers will gain the necessary knowledge to harness econometrics as a powerful tool for 
making informed predictions and conducting thorough analyses. 

Keywords: econometrics; regression model; linear models; unit roots tests; volatility models; 
multivariate time series analysis; multivariate GARCH volatility; hedging. 

 
JEL Classification: C01; C53; C58. 
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Chapter 1 

Introduction in Econometrics 

 

What is econometrics?  

It was interpreted as econometrics means "economic measurement." Although 
measurement is an essential part of econometrics, the scope of econometrics is much broader. 
It is based upon the development of statistical methods for estimating economic relationships, 
testing economic theories, and evaluating and implementing government and business policy. 
The most common application of econometrics is forecasting important microeconomic and 
macroeconomic variables.  

Econometrics combines economic theory, mathematical economics, and statistics, but 
it is distinct from each branch of science. Economic theory makes statements or hypotheses 
that are primarily qualitative. For instance, the microeconomic theory states that other things 
remain the same; a commodity's price reduction is expected to increase the quantity demanded 
of that commodity. But the approach needs to provide a numerical measure of the relationship 
between the two; that does not tell how much will go up or down due to an inevitable change in 
the commodity's price. It is the job of an econometrician to provide such numerical statements. 

The main concern of mathematical economics is to express economic theory in 
mathematical form (equations) without regard to measurability or empirical verification of the 
approach. Both economic theory and mathematical economics state the same relationships. 
The economic theory uses verbal exposition, but mathematical economics employs 
mathematical symbolism. Neither allows for random elements that affect the relationship and 
make it stochastic. Furthermore, they do not provide numerical values for the coefficients of the 
connections. Although econometrics presupposes the expression of economic relationships in 
mathematical forms, like mathematical economics, it does not assume that financial 
relationships are exact (deterministic).  

Economic statistics mainly collect, process, and present financial data in charts and 
tables. It is primarily a descriptive aspect of economics. However, it needs to explain the 
development of the various variables and measure the parameters of economic relationships. 
Econometrics is the application of statistical and mathematical techniques to analyze economic 
data to verify or refute economic theories. In this respect, econometrics is distinguished from 

https://doi.org/10.57017/2023.SERITHA.GEA.part1
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The structure of economic data  

Economic data sets come in a variety of types. The most important data structures 
encountered in applied work are the following:  

• Cross-sectional data: a sample of individuals, households, firms, cities, states, 
countries, or other units, taken at a given time.  

• Time series data consists of observations on a variable or several variables over time; 
examples of time series data include stock prices.  

• Pooled Cross Section data have both cross-sectional and time series features. A 
pooled cross-section is analyzed much like a standard cross-section, except that we 
often need to account for secular differences in the variables across time.  

•  Panel data: This type of pooled data in which the same cross-sectional units (say, 
individuals, firms, or countries) are surveyed over time. It consists of a time series for 
each cross-sectional member in the data set. Hence, the critical feature distinguishing 
panel data from a pooled cross-section is that the same cross-sectional units are 
followed over a given period. 

Each data structure has its strengths and considerations for econometric analysis. The 
choice of appropriate econometric models and techniques depends on the specific data 
structure and research objectives. Econometric methods for cross-sectional data, time series 
data, pooled cross-section data, and panel data have been developed to accommodate the 
unique characteristics and dependencies associated with each structure. 
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Chapter 2 

Regression Model 

 
This chapter starts with an introduction to linear regression analysis, estimation, and 

inference methods. Regression analysis is a widely used tool in econometrics. They are used 
to describe and evaluate the relationship between economic variables and perform forecasting 
tasks. This chapter provides only a short and brief description of the main tools used in 
regression analysis. More detailed discussion and more profound theoretical background can 
be found in Greene (2000), Hamilton (1994), Hayashi (2000), Verbeek (2014), Mills (1999), and 
Zivot and Wang (2006). 

Linear regression model 

Linear regression analysis is a fundamental and widely used statistical technique in 
econometrics. It is a powerful tool for examining the relationship between dependent and 
independent variables, quantifying the impact of predictors on the outcome variable, and 
making predictions or forecasts.  

In linear regression analysis, the goal is to model the linear relationship between a 
dependent variable (also known as the response or outcome variable) and one or more 
independent variables (also known as predictors or explanatory variables). The relationship is 
represented by a linear equation that estimates the average effect of changes in the 
independent variables on the dependent variable. 

Consider the linear regression model: 

    2.1. 

 where:  is a  vector of explanatory variables,  is a  
vector of coefficients, and  is a random error term. In matrix form, the model is 
expressed as: 

         2.2. 

where:  and   are  vectors and  is an  matrix. 

The standard assumptions of the linear regression model are: 

https://doi.org/10.57017/2023.SERITHA.GEA.part1
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The least squares estimation problem to minimize: 

, 

becomes nonlinear. The first-order conditions are given by: 

      2.5. 

This gives a set of nonlinear normal equations in . The nonlinear least squares (NLS) 
estimator  is the minimizing value of (2.5). 

In EViews, the Nonlinear Least Squares method implements the same OLS. The only 
difference is that the model in the Equation specification box should be entered as a 
mathematical expression instead of a list of variables. for example, 

 

When using nonlinear regression models, it is important to carefully consider the choice 
of functional form and interpret the estimated coefficients appropriately. Interpreting the 
estimation output, residual diagnostic, and inference can be performed like for the OLS 
regression. Researchers should also assess the goodness of fit of the model and assess the 
statistical significance of the estimated parameters. Inference techniques, such as hypothesis 
testing and confidence intervals, can still be applied in nonlinear regression to evaluate the 
significance and precision of the estimated parameters. 
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Chapter 3 

Univariate Time Series: Linear Models 

 

Time series is a sequence of numerical data in which observations are measured at a 
particular instant in time. For example, the observation frequency can be annual, quarterly, 
monthly, daily, etc. The main goal of time series analysis is to study the data dynamics. It 
involves studying the patterns, trends, and dynamics within the data to understand its behaviour 
and make forecasts or predictions for future time points. 

This chapter introduces basic time series models for estimating and forecasting data. 
Further details about the theory of time series analysis can be found in Hamilton (1994), Greene 
(2000), Enders (2004), Tsay (2002), and others. There are various basic time series models 
that are commonly used for estimating and forecasting data. Here are a few examples: 

▪ Autoregressive (AR) Model: The autoregressive model describes a time series by 
regressing its current value on its past values. It assumes that the current value depends linearly 
on its own lagged values. The AR model is denoted as AR(p), where 'p' represents the number 
of lagged values considered in the regression equation. 

▪ Moving Average (MA) Model: The moving average model focuses on the relationship 
between the current value of a time series and the past prediction errors. It assumes that the 
current value depends linearly on the error terms from previous time points. The MA model is 
denoted as MA(q), where 'q' represents the number of lagged prediction errors considered in 
the equation. 

▪ Autoregressive Moving Average (ARMA) Model: The ARMA model combines the 
autoregressive and moving average models. It incorporates both the autoregressive terms and 
the moving average terms to capture the dynamics of the time series. The ARMA model is 
denoted as ARMA(p, q), where 'p' represents the number of autoregressive terms and 'q' 
represents the number of moving average terms. 

▪ Autoregressive Integrated Moving Average (ARIMA) Model: The ARIMA model 
extends the ARMA model by incorporating differencing to achieve stationarity in the data. It is 
suitable for time series data that exhibit trends or non-stationarity. The ARIMA model is denoted 
as ARIMA(p, d, q), where 'p' represents the number of autoregressive terms, 'd' represents the 
order of differencing, and 'q' represents the number of moving average terms. 

https://doi.org/10.57017/2023.SERITHA.GEA.part1
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Estimation of ARMA processes 

 models are generally estimated using the maximum likelihood technique. 
An often, ignored aspect of the maximum likelihood estimation of  models is the 
treatment of initial values. These initial values are the first  values of  and  values of  in 
(3.1). The exact likelihood utilizes the stationary distribution of the initial values in constructing 
the likelihood. The conditional likelihood treats the  initial values of  as fixed and often sets 
the  initial values of  to zero. The exact maximum likelihood estimates (MLE) maximize the 
exact log-likelihood, and the conditional MLE maximizes the conditional log-likelihood. The 
exact and conditional MLEs are asymptotically equivalent but can differ substantially in small 
samples, especially for models that are close to being non-stationary or non-invertible. 

The conditional MLEs are equivalent to the least squares estimates for pure AR models. 
Model Selection Criteria Before an  may be estimated for a time series , the  
and  orders  and  must be determined by visually inspecting the autocorrelation and partial 
autocorrelation functions for . A first-order autoregressive model is appropriate if the 
autocorrelation function decays smoothly, and the partial autocorrelations are zero after one 
lag. Alternatively, a first-order moving average process would seem reasonable if the 
autocorrelations were zero after one lag and the partial autocorrelations decayed slowly toward 
zero. 

Alternatively, statistical model selection criteria may be used. The idea is to fit all 
 models with orders  and  and choose the values of  and , which minimizes 

model selection criteria: 

 

where:  is the MLE of  without a degrees of freedom correction from the 
 model. 

To estimate and forecast data using time series models, various techniques are 
employed, such as maximum likelihood estimation, least squares estimation, or state space 
models. These techniques involve estimating the parameters of the models based on historical 
data and using them to make predictions for future time points. 
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Chapter 4 

Stationarity and Unit Roots Tests 

 

Many time series, like exchange rate levels of stock prices, appear non-stationary. 

However, new statistical issues arise when analyzing non-stationary data. For example, unit 

root tests detect the presence and form of non-stationarity. Detecting non-stationarity is crucial 

because it affects the modelling and analysis of time series data. 

This chapter reviews the main concepts of the non-stationarity of time series and 

describes some tests for time series stationarity. More information about such tests can be 

found in Hamilton (1994), Dickey and Fuller (1979), Enders (2004), Harris (1995), and Verbeek 

(2008). 

A non-stationary time series is called integrated if it can be transformed by first 

differencing once or a very few times into a stationary process. The order of integration is the 

minimum number of times the series needs to be first differenced to yield a stationary series. 

An integrated order 1-time series is denoted by I(1). A stationary time series is said to be 

integrated of order zero, I(0). 

There are two principal methods of detecting non-stationarity: 

▪ Visual inspection of the time series graph and its correlogram provide initial insights 

into the presence of non-stationarity. In a non-stationary series, the mean and variance may 

change over time, and there may be trends, cycles, or irregular patterns. The correlogram can 

reveal persistent autocorrelation at various lags, indicating potential non-stationarity. However, 

visual inspection alone may not provide definitive evidence of non-stationarity and requires 

further statistical testing. 

▪ Formal statistical tests of unit roots. Unit root tests are statistical tests used to 

formally assess non-stationarity. These tests examine whether a time series has a 

unit root, which indicates the presence of a stochastic trend or non-stationarity. The 

most commonly used unit root tests include the Augmented Dickey-Fuller (ADF) test 

and the Phillips-Perron (PP) test. 
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(KPSS). The KPSS test is another widely used unit root test that evaluates non-stationarity from 

a different perspective.  

Unlike the ADF and PP tests, which test for the presence of a unit root, the KPSS test 

examines the null hypothesis of stationarity. It tests whether a time series is trend-stationary, 

meaning it exhibits a constant mean and variance over time, with or without a deterministic 

trend component. The KPSS test provides a test statistic and critical values to determine 

whether the null hypothesis of stationarity can be rejected, indicating the presence of non-

stationarity. 

Kwiatkowski, Phillips, Schmidt, and Shin (1992) derive their test by starting with the 

model: 

 

where  is  and may be heteroskedastic. 

The null hypothesis that  is  is formulated as , which implies that  is a 

constant. Although not directly apparent, this null hypothesis also means a unit moving average 

root in the ARMA representation of . The KPSS test statistic is the Lagrange multiplier (LM) 

or score statistic for testing  against the alternative that  and is given by: 

 

where  is the residual of a regression  on  and . 

Critical values from the asymptotic distributions must be obtained by simulation 

methods. The stationary test is a one-sided right-tailed test so that one rejects the null of 

stationarity at the  level if the KPSS test statistic is greater than the  quantile from 

the appropriate asymptotic distribution. 

These tests provide evidence for or against the presence of a unit root but do not 

necessarily imply the form of non-stationarity or the appropriate transformation needed to 

achieve stationarity. The interpretation of unit root test results should be done carefully, 

considering other factors such as economic theory, the nature of the data, and the objectives 

of the analysis. 

Overall, the combination of visual inspection and formal statistical tests of unit roots 

provides a comprehensive approach to detecting non-stationarity in time series data and 

guiding the selection of appropriate modelling techniques. 
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Chapter 5 

Univariate Time Series: Volatility Models 

 

In this chapter 5, we have considered approaches to modeling the conditional mean of 
a univariate time series. However, many areas of financial theory are concerned with the second 
moment of time series - conditional volatility as a proxy for risk. In this chapter, we introduce 
time series models that represent the dynamics of conditional variances. In particular, we 
consider two widely used classes of models for modelling volatility: the Autoregressive 
Conditional Heteroscedasticity (ARCH) model and its extension, the Generalized 
Autoregressive Conditional Heteroscedasticity (GARCH) model.  

These models and their extensions provide a framework for capturing and analysing the 
dynamics of conditional variances in time series data, particularly in financial markets where 
volatility plays a crucial role. They offer valuable insights into the patterns, persistence, and 
asymmetries of volatility, allowing for more accurate risk management, option pricing, and 
forecasting in financial applications. 

In this regard, the reader is also referred to Engle (1982), Bollerslev (1987), Nelson 
(1991), Hamilton (1994), Enders (2004), and Zivot and Wang (2006). These research works 
have significantly contributed to the development and understanding of time series analysis. 
They have shaped the literature and influenced subsequent research in the field, providing 
valuable insights and methodologies for modelling and analysing financial and economic time 
series data. 

The ARCH models 

Besides a time-varying conditional mean of time series, most also exhibit changes in 
volatility regimes, especially applicable to many high-frequency macroeconomic and economic 
time series. While modeling such time series, we cannot use homoscedastic models. The 
simplest way to allow volatility to vary is to model conditional variance using a simple 
autoregressive (AR) process. 
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Figure 5.2. Plot of the simulated GARCH process 
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This section illustrates how to estimate a GARCH model, assuming that  follows 
normal or Gaussian distribution conditional on history, the prediction error. 

Figure 5.3: Histogram of the simulated GARCH process 
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Forecasting the conditional volatility for  periods ahead can be done by a recursion: 

, 

where:  for . 

The -period ahead variance forecast for a  model is: 

 

Once a GARCH model is estimated and the parameters are obtained, forecasting the 
conditional variance involves a recursive process. The general steps for forecasting the 
conditional variance from a GARCH model are as follows: 

- Obtain initial values: To initiate the forecasting process, initial values for the 
conditional variance need to be specified. Typically, these initial values are set equal 
to the estimated conditional variance from the last available data point. 

- Forecast the next period's conditional variance: Using the estimated GARCH 
parameters and the previous period's conditional variance, the next period's 
conditional variance can be forecasted. The GARCH model equations are applied 
recursively to calculate the forecasted conditional variance. 

- Repeat the process: The forecasted conditional variance from step 2 becomes the 
input for the next period, and the forecasting process is repeated iteratively to obtain 
forecasts for subsequent periods. 

Continuing this iterative process, future values of the conditional variance can be 
forecasted over the desired forecast horizon. These forecasts provide valuable information 
about the expected volatility of returns and can be used for risk management, option pricing, 
and portfolio optimization, among other applications. 
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Chapter 6 

Multivariate Time Series Analysis 

 

Multivariate time series analysis involves the analysis and modelling of multiple time 
series variables that are observed simultaneously over time. It allows for the examination of the 
relationships, dependencies, and interactions between multiple variables, providing a more 
comprehensive understanding of the dynamics and patterns within the data. Here are some 
key aspects and methods used in multivariate time series analysis: 

- Vector Autoregression (VAR): VAR models are commonly used in multivariate time 
series analysis. A VAR model represents each variable in the system as a linear 
function of its lagged values and the lagged values of all other variables in the system. 
VAR models capture the simultaneous and lagged dependencies among the variables 
and can be used for forecasting, impulse response analysis, and variance 
decomposition. 

- Granger Causality. A statistical concept used to assess the causal relationship 
between variables in a multivariate time series. It determines whether the past values 
of one variable help in predicting another variable beyond its own past values. Granger 
causality tests can provide insights into the direction and strength of causal 
relationships among the variables. 

- Cointegration: A concept that deals with the long-term relationship between non-
stationary time series variables. It identifies whether a linear combination of variables 
is stationary, implying a stable long-term relationship. Cointegration analysis is 
important when dealing with variables that exhibit unit roots (non-stationarity) and 
helps in analysing the long-run equilibrium relationships between variables. 

The vector autoregression model is one of the most potent multivariate time series. It is 
a natural extension of the univariate autoregressive model to the multivariate case.  

In this chapter, we cover concepts of VAR modeling, non-stationary multivariate time 
series, and cointegration. A more detailed discussion can be found in Hamilton (1994), Harris 
(1995), Enders (2004), Tsay (2002), and Zivot and Wang (2006). These references, are 
valuable resources that provide in-depth explanations, examples, and applications in 
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Granger causality tests are widely used in various fields, including economics, finance, 
and social sciences, to explore relationships between variables and understand the direction of 
information flow. They provide valuable insights into the potential causal dynamics among 
variables and help inform decision-making and policy analysis. 

Impulse Response and Variance Decompositions 

As in the univariate case, a  process can be represented as a vector moving 
average (VMA) process: 

 

where: the  moving average matrices  are determined recursively using (6.3). 

The elements of coefficient matrices  mean effects of  shocks on . The -th 
element, , of the matrix  is interpreted as the impulse response: 

. 

Sets of coefficients  are called the impulse response functions. 

It is possible to decompose the -step-ahead forecast error variance into the proportions due to 
each shock . The forecast variance decomposition determines the proportion of the variation 

 due to the shock  versus shocks of other variables  for . 

Table 6.1. Key questions addressed by Impulse response function and variance decomposition 

Tools Impulse Response Function (IRF) Variance Decomposition 

Purpose ▪ Analyse dynamic responses of variables 
to a shock 

▪ Quantify the contribution of variables 
to forecast variance 

Questions 

▪ How does a shock in one variable affect 
other variables? 

▪ How much does each variable 
contribute to forecast error? 

▪ What is the duration and magnitude of the 
response? 

▪ What is the relative importance of 
each variable's shock? 

▪ Are the responses symmetric or 
asymmetric? 

 

▪ Are there any lead-lag relationships 
among the variables? 

 

▪ How do the effects of shocks evolve over 
time? 

 

▪ Do shocks die out or persist in the 
system? 

 

▪ What are the dynamic interactions and 
dependencies among variables? 
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It checks whether the smallest  eigenvalues are statistically different from zero. 
For example, if , then  should all be close to zero, and  
should be small. In contrast, if , then some of  will be non-zero (but less 
than 1), and  should be large. 

We can also test  against  using so-called the maximum 
eigenvalue statistic: 

. 

Critical values for the asymptotic distribution of  and  statistics 
are tabulated in Osterwald-Lenum (1992) for . To determine the number of 
cointegrating vectors, first test  against the alternative . If this null is not 
rejected, then it is concluded that there are no cointegrating vectors among the  variables in 
. If  is rejected, then there is at least one cointegrating vector. In this case, we should 
test  against . If this null is not rejected, we say there is only one cointegrating 
vector. If the null is rejected, there are at least two cointegrating vectors. Therefore, we test 

 and so on until the null hypothesis is not rejected. 
In small samples, tests are biased if asymptotic critical values are used without a 

correction. Reinsel and Ahn (1992) and Reimars (1992) suggested small sample bias correction 
by multiplying the test statistics with  instead of  in constructing the likelihood ratio tests. 
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Chapter 7 

Multivariate GARCH Models 

 
Modeling volatility in financial time series has been the object of much attention ever 

since the introduction of the Autoregressive Conditional Heteroskedasticity (ARCH) model in 
the seminal paper of Engle (1982). Subsequently, numerous variants and extensions of ARCH 
models have been proposed. A large body of this literature has been devoted to univariate 
models; for example, Bollerslev et al. (1994). 

While modeling volatility of the returns has been the main center of attention, 
understanding the comovements of financial returns is of great practical importance. It is, 
therefore, essential to extend the considerations to multivariate GARCH (MGARCH) models. 
For example, asset pricing depends on the covariance of the assets in a portfolio, and risk 
management and asset allocation relate, for instance, to finding and updating optimal hedging 
positions.  

Combining these needs has been difficult in the MGARCH literature. The first GARCH 
model for the conditional covariance matrices was the VEC model of Bollerslev, Engle, and 
Wooldridge (2015); see Engle, Granger, and Kraft (1984) for an ARCH version. This model is 
very general, and a goal of the subsequent literature has been to formulate more parsimonious 
models. Furthermore, since imposing positive definiteness of the conditional covariance matrix 
in this model is complex, developing models with this feature has been considered necessary. 
Likewise, constructing models in which the estimated parameters have direct interpretation has 
been viewed as beneficial. 

Models 

Consider a stochastic vector process  with dimension  such that . Let 
 denote the information set generated by the observed series  up to and including time 

. We assume that    is conditionally heteroskedastic: 

.         7.1. 

Given the information set , where the  matrix  is the conditional 

covariance matrix of  and  is an iid vector error process such that . This defines the 
standard multivariate GARCH framework, in which rt has no linear dependence structure . 
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The interpretation of the extreme states is the following: At the beginning of the sample, 
 and  are the two extreme states between which the correlations vary according to the 

transition variable  and similarly,  and  are the corresponding states at the end of 
the sample. The TVSTCCGARCH model allows the extreme states, constant in the STCC-
GARCH framework, to be time-varying, which introduces extra flexibility when modeling long 
time series. The number of parameters, excluding the univariate GARCH equations, is 

, which restricts the use of the model in very large systems. 
The Regime Switching Dynamic Correlation (RSDC-) GARCH model introduced by 

Pelletier (2006) falls somewhere between the models with constant correlations and those with 
continuous correlations at every period. The model imposes constancy of correlations within a 
regime while the dynamics enter through switching regimes. Specifically, 

, 

where:  is a (usually first-order) Markov chain independent of  that can take  possible values 
and is governed by a transition probability matrix  is the indicator function, and , 

, are positive definite regime-specific correlation matrices. The correlation 
component of the model has  parameters.  

A version that involves fewer parameters is obtained by restricting the  possible states 
of correlations to be linear combinations of a state of zero correlations and that of possibly high 
correlations. Thus, 

, 

where:  is the identity matrix ('no correlations'),  is a correlation matrix representing the state 
of possibly high correlations, and  is a monotonic function of .  

The number of regimes R is not a parameter to be estimated. The conditional correlation 
matrices are positively definite at each point in time by construction both in the unrestricted and 
restricted versions of the model. Pelletier (2006) recommends a two-step estimation if N is 
small. First, estimate the parameters of the GARCH equations and, second, conditionally, on 
these estimates, estimate the correlations and the switching probabilities using the EM 
algorithm of Dempster, Laird, and Rubin (1977). 

Statistical properties 

Statistical properties of multivariate GARCH models are only partially known. For the 
development of statistical estimation and testing theory, it would be desirable to have conditions 
for strict stationarity and ergodicity of a multivariate GARCH process and conditions for 
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consistency and asymptotic normality of the quasi-maximum likelihood estimator. The available 
results establish these properties in special cases and sometimes under strong conditions. 

Jeantheau (1998) considers the statistical properties and estimation theory of the 
ECCCGARCH model he proposes. He provides sufficient conditions for a weakly stationary and 
ergodic solution, which is also strictly stationary. This is done by assuming . It would 
be useful to have both a necessary and a sufficient condition for a strictly stationary solution, 
but this question remains open. Jeantheau (1998) also proves the strong consistency of the 
QML estimator for the ECCC-GARCH model.  

Ling and McAleer (2003) complement Jeantheau's results and prove the asymptotic 
normality of the QMLE in the case of the ECCC-GARCH model. The sixth moment of  is 
required for the global asymptotic normality result . The statistical properties of the second-
order model are also investigated by He and Teräsvirta (2004), who provide sufficient conditions 
for the existence of fourth moments, and, furthermore, give expressions for the fourth moment 
as well as the autocorrelation function of squared observations as functions of the parameters. 

Comte and Lieberman (2003) study the statistical properties of the BEKK model. Relying 
on Boussama (1998) result, they give sufficient but not necessary conditions for strict 
stationarity and ergodicity. Applying Jeantheau's effects, they provide conditions for the strong 
consistency of the QMLE. Furthermore, they also prove the asymptotic normality of the QMLE, 
for which they assume the existence of the eighth moment of . The fourth-moment structure 
of the BEKK and VEC models is investigated by Hafner (2003), who gives necessary and 
sufficient conditions for the existence of the fourth moments and provides expressions for them. 
These expressions are not functions of the parameters of the model.  
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Financial Economics 

 

Chapter 8 Tourist Demand Using VECM and Cointegration 
   

Chapter 9  Modelling the Growth Rate and Volatility in International Tourist Arrivals  
  

Chapter 10 Volatility transmission, Comovements, and Spillovers Models with 
applications to Financial Economics 

 
Part II will be the application of principles and tools in econometrics. The problem with 

using econometric tools is that we have learned the principles but have yet to be able to apply 
them in practice for further research that needs to be studied or solved. Therefore, in this 
section, the author brings together peer-reviewed research to apply to the actual situation in 
terms of tourism, which is the case in Thailand, and finance and investment, which is linked to 
foreign markets. The results obtained can be used for practical purposes. They can provide 
policy recommendations to the government or relevant agencies.  

We apply the econometrics tools to tourism and financial economics because the service 
sector and its operational efficiency are increasingly crucial in GDP creation and volatility 
generation in economic development. Efficient and growth-generating management of such 
vital elements of the service sector as tourism, financial instruments, and petroleum and other 
futures markets; must be balanced against concern for both stability (reductions in temporally 
predictable extreme fluctuations) and self-immunization against the vagaries of external natural, 
financial, petroleum-based. As service-sector markets are frequently co-integrated, it is also 
vital to determine whether an investment in one can offset downside risk in the others.  

Econometric management was developed when agriculture was still the predominant 
sector of the economy in both GDP and employment. Ricardo's theory of surplus value and 
diminishing returns, Griliches', Nerlove, Koyck, Almon and others' breakthroughs in the 
estimation of stochasticity in yields and lagged dependence; measurement, and explanation of 
productive efficiency under technical change and inter-annual weather fluctuations; the 
stochastic frontier function; and the early applications of Box and Jenkins' ARIMA to the 
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modelling of cobweb structures in the livestock sector all took real-world agricultural data as 
both their inspiration and data source. 

Today, those fundamental econometric tools must not only be transferred to the service 
sector; they must be improved through further methodological advances to reflect the unique 
features of each subsector and market: the consumer market (tourism), financial markets 
(financial instruments, stocks, petroleum, and other futures).  

These special proceedings issue of the author proudly focuses on the publication of 
seminal contributions in each of these subsectors of the service economy from authors working 
in two subdivisions: consumer markets and financial markets. 

Tourism 

First, we study the relationship between four factors in the Japanese demand model, 
including the number of Japanese arrivals to Thailand, GDP per capita of Japanese tourists, 
the own price, and the cross price. It is a multivariate analysis that investigates dependence 
and interaction among variables in a multi-values process. One of the most potent methods of 
analysing multivariate time series is the vector autoregression model (VAR), and the extended 
models are the vector error correction model (VECM) and Cointegration. 

Second, we analyse the volatility of Thailand's international tourist arrival growth rates. 
The variable of interest for policymakers was the tourist arrival growth rates at any given month, 
directly related to tourism revenue growth rates. In this study, we considered the volatility of 
Thailand's international tourist arrival growth rates by employing the GARCH and GJR models. 
GARCH and GJR models were widely used to manage financial and tourism risk exposure. 

Third, we examined the international tourist arrivals volatility comovements and 
spillovers for Malaysian (GML), Japanese (GJP), British (GUK), and American (GUS) tourists. 
The three Multivariate GARCH models were employed: the VAR (5)-diagonal VECH and VAR 
(5)-diagonal BEKK. 

Financial markets 
First, we examined the oil futures and the carbon emissions futures volatility 

comovements and spillovers for crude oil, gasoline, and heat oil, as well as carbon emissions. 
The three Multivariate GARCH models, namely the VAR (3)-diagonal VECH, the VAR (3)-
diagonal BEKK, and the VAR (3)-CCC, were employed. The empirical results showed that the 
VAR (3)-diagonal VECH estimates and the VAR (3)-CCC parameters were statistically 
significant in a case involving oil except for carbon emissions.  

Second, we examined the COMEX market's precious metals volatility comovements and 
spillovers for gold, palladium, platinum, and silver. The results of the volatility analysis were 
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used to calculate the optimal two-metal portfolio weights and hedging ratios. The three 
Multivariate GARCH models, namely the VAR (1)-diagonal VECH, the VAR (1)-diagonal BEKK, 
and the VAR (1)-CCC, were employed. 

Third, we study the petroleum futures volatility comovements and spillovers for crude oil, 
gasoline, heat oil, and natural gas. The results of volatility analysis were used to calculate the 
optimal two-petroleum portfolio weights and hedging ratios. The three Multivariate GARCH 
models, namely the VAR (1)-diagonal VECH, the VAR (1)-diagonal BEKK, and the VAR (1)-
CCC, were employed. 

The content provides cutting-edge insights for the academic econometrician, practical 
forecasting tools, private decision-making, and policy recommendations for fostering vigorous 
research. 

Keywords: multivariate time series; volatility transmission; comovement and spillover; 
multivariate GARCH 

 
JEL Classification: C51; C52; C54; C55; C58. 
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Chapter 8 

Tourist Demand Using VECM and Cointegration1 

 

The importance of tourism is a source of income for the country. For Thailand, tourism 
revenue is proportional to 15% of the GDP. Tourism revenue turns over in the country is more 
than 8 billion baht per year. We receive income from the travel of Thai tourists and foreign 
tourists entering Thailand, so the Thai government prioritizes tourism (Tourism Authority of 
Thailand, 2023a). 

However, the purpose of this study focused on the study of foreign tourists, which this 
study needs to be revised. The data (Tourism Authority of Thailand, 2023b) showed that 
foreign tourists from Figure 8.1 in 2022 compared arrivals from different world regions in 2019 
and 2022. Primarily the number of arrivals was proportionally less for all areas except for 
arrivals from Eastern Asia. And from Figure 8.2, it can be seen that tourists in East Asia are 
still important, especially Chinese and Japanese tourists;  

Figure 8.1. Tourists to Thailand (2019 and 2022), region of origin 

 
Source: https://www.thaiwebsites.com, 2023 

Figure 8.2. Tourist arrivals by nationality in 2022 

 
1 This chapter is based on the findings of the published paper (Bunnag, 2014) 
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Period S.E. LOGNOJ LOGGDPJ LOGRPJ LOGCPJ 
1  0.084  2.039  7.077  90.882  0.000 
2  0.116  1.708  4.273  88.983  5.034 
3  0.134  3.270  4.609  86.753  5.366 
4  0.149  4.504  4.212  86.629  4.652 
5  0.167  5.366  3.921  86.704  4.008 
6  0.182  6.694  3.658  86.008  3.638 
7  0.198  9.078  3.470  84.204  3.247 
8  0.213  10.634  3.353  83.118  2.893 
9  0.229  11.872  3.212  82.279  2.635 
10  0.244  13.176  3.016  81.381  2.424 

4. LOGCPJ 
Period S.E. LOGNOJ LOGGDPJ LOGRPJ LOGCPJ 

1  0.120  9.85E-05  4.217  21.881  73.900 
2  0.191  0.511  2.500  40.154  56.833 
3  0.262  0.582  2.582  50.324  46.510 
4  0.336  0.871  1.910  55.706  41.511 
5  0.386  0.985  1.480  58.178  39.355 
6  0.423  1.152  1.254  58.734  38.857 
7  0.455  1.426  1.088  59.545  37.939 
8  0.485  1.825  0.968  60.177  37.028 
9  0.513  2.250  0.868  60.523  36.356 
10  0.542  2.791  0.794  60.896  35.518 

        We can conclude the relationships in the short run of various variables in the Japanese 
tourist demand model. It shows the relationship as follows: It produces a relationship called 
the income elasticity of demand and the own price elasticity of demand, equal to 3.281 and 
-0.505, respectively. In addition, the percentage change of GDP per capita of Japanese 
tourists has a negative relationship with the percentage change in the own price. Finally, 
the percentage change of the cross-price has a positive relationship with the percentage 
change of the own price. 

In the long run, the number of Japanese tourist arrivals has a positive relationship with 
the GDP per capita of Japanese tourists, and the own price also has a positive relationship 
with the cross price. This conclusion is expected to be useful to the government and the 
private sector in tourism management for Japanese tourists. 
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Chapter 9 

Modelling Volatility and Growth Rate in International Tourist Arrivals 

 
This chapter examined the volatility of international tourist arrival growth rates to 

Thailand using monthly time series data from 1991-2022, being an updated version of our 
previous research published1, and the timing of such data will cover the impact of the Covid-19 
pandemic, amplifying the effect of volatility. The variable of interest for policymakers was the 
tourist arrival growth rates at any given month, directly related to tourism revenue growth rates.  

In the studies presented in sub-chapter 9.1 and 9.2 considered the volatility of Thailand's 
international tourist arrival growth rates by employing the GARCH and GJR models. GARCH 
and GJR models were widely used to manage financial and tourism risk exposure. Considering 
the number of tourist arrivals and the growth rate, it was found that most tourists were from 
Malaysia and Japan. Therefore, this study could compare the USA and the UK in making policy 
because of the difference in tourism volatility. The GARCH model generated relatively accurate 
tourism volatility forecasts from this study, except for Japan and the USA volatility. In addition, 
the GJR model developed fairly accurate tourism volatility forecasts except for Malaysia and 
the UK volatility. 

The sub-chapter 9.3 examined the international tourist arrivals volatility comovements 

and spillovers for Malaysian (GML), Japanese (GJP), British (GUK), and American (GUS) 

tourists. The data used in this study was the monthly data from 1985 to 2022, and the two 

Multivariate GARCH models were employed, namely the VAR (5)-diagonal VECH and the VAR 

(5)-diagonal BEKK. The empirical results overall showed that the estimates of the VAR (5)-

diagonal VECH parameters were statistically significant in the case of GML with GUS and GJP 

with GUS except in the case of GML with GJP, GML with GUK, GJP with GUK, and GUK with 

GUS. This indicates that the short-run persistence of shocks on the dynamic conditional 

correlations was greatest for GML with GJP, while the largest long-run persistence of shocks to 

the conditional correlations for GML with GUS.  

 
1 This sub-chapter is based on the findings of the published paper of Bunnag (2016). 
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like Bangkok, Phuket, and Pattaya resulted in environmental degradation and strained 
infrastructure. 

The number of tourists visiting Thailand increased from 35.35 million in 2017 to 38.28 
million in 2018 and 39.92 million in 2019. The increase in visitors from 2018 to 2019 was limited 
to 4.24%, less than Thai authorities expected. The ever-rising number of tourists arriving ended 
abruptly from March 2020 onwards. 2020 saw only 6,702,396 tourists, almost all coming in the 
year's first three months. No tourists were allowed in from March 2020 to the end of August 
2020. After that, in the last three months of 2020, 10,822 tourists arrived under exceptionally 
stringent conditions.  

Lots of people in the hospitality sector have lost their jobs. As 2020, 2021 was a dismal 
year with few visitors arriving, but Thailand had the opening of the country as of 1 November 
2021. This appears to have been an audacious move since, at the time of the initiative's 
announcement, a new wave of Covid-19 was hitting the country hard, much more so than during 
the initial infections in 2020. But it likely needed to be done since many people have a 
significantly reduced income, and the government needs more resources to continue providing 
for them. However, the impact of this relaxation of travel conditions was limited, with little effect 
on the number of arrivals. Except for the last three months of 2021, monthly appearances were 
between 5,000 and 20,000 each month, which is a deficient number for Thailand. Figure 9.1. 
shows that more tourists started coming during the last quarter of 2021. Things improved, 
especially from the middle of 2022, when most restrictions were lifted. 

Figure 9.1. International Tourist Arrivals to Thailand, 2006 – 2022 (millions) 

 
Source: The Tourism Authority of Thailand (2023) 
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From Figure 9.3, during COVID-19, the number of these tourists declined. However, the 
cumulative number of such tourists is still significant, especially Malaysian and Japanese 
tourists. Considering the number of tourist arrivals and the growth rate, it was found that most 
tourists are from Malaysia and Japan. Therefore, this study can compare the USA and the UK 
for making policies because of the difference in tourism volatility. 

Figure 9.3. Tourist arrivals by nationality in 2022, thousands 

 
Source: www.thaiwebsites.com (2023) 

9.1.1. Related Literature Review for Volatility Analysis 

In volatility analysis, Michael McAleer et al. (2005) studied a risk management 
framework of daily tourist tax revenues for the Maldives using value at risk (VaR) to measure 
the risk from the growth of the number of tourist arrivals affecting the environment. The GARCH 
(1,1) and the GJR(1,1) were used to forecast the required conditional volatilities.  

Shareef and McAleer (2007) showed how the GARCH (1,1) model and the GJR (1,1) 
model could be used to measure the conditional volatility in monthly international tourist arrivals 
to six SITEs, namely Barbados, Cyprus, Dominica, Fiji, Maldives, and Seychelles, and to 
appraise the implications of conditional volatility of SITEs for modelling tourist arrivals. For the 
logarithm of monthly international tourist arrivals, the estimates of the conditional volatility using 
GARCH (1,1) and GJR (1,1) was highly satisfactory. The conditions to ensure the positivity of 
the conditional variance were met for all six SITEs, except for Maldives. It was worth noting that 
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which minimizes some model selection criteria. Model selection criteria for VAR (p) could be 
based on Akaike (AIC), Schwarz-Bayesian (BIC), and Hannan-Quinn (HQ) information criteria. 

Before constructing the conditional mean, the first thing to do is find the right VAR 
model's lag, as shown in Table 9.14. From the various criteria are found to be selected lag that 
8, 5, 1, and 2, respectively. Most of them will choose lag 5. Therefore, lag 5 should be suitable 
for the conditional mean. After all, multivariate conditional volatility models are already 
estimated. In the next step, we must explain each model's results and select the best model. 

Table 9.14. Lag order selection 

Lag LR FPE AIC SC HQ 
0 NA 3.49e+08 31.020 31.064 31.038 
1 168.148 2.35e+08 30.627 30.846* 30.714 
2 87.835 1.99e+08 30.462 30.857 30.619* 
3 53.750 1.86e+08 30.394 30.965 30.621 
4 48.473 1.77e+08 30.340 31.087 31.087 
5 30.995 1.76e+08* 30.337* 31.259 30.704 
6 24.340 1.79e+08 30.354 31.452 30.791 
7 22.541 1.83e+08 30.375 31.648 30.882 
8 36.264* 1.76e+08 30.352 31.801 30.929 

Note: * indicates lag order selected: LR (Sequential modified test statistic,) FPE (Final prediction error), 
AIC (Akaike information criterion), SC (Schwarz information criterion), HQ (Hannan-Quinn 
information criterion). 

The VAR (5)-diagonal VECH estimates of the conditional correlation between the 
volatilities of the growth rates of international tourist arrivals based on estimating the univariate 
GARCH (1,1) model for each international tourist are given in Table 9.15 (see APPENDIX 1 
Chapter 9 – subchapter 9.3.3). The estimates of the VAR (5)-diagonal VECH parameters that

1  and 2 are statistically significant in the case of )_( GUSGML , and )_( GUSGJP  except in the 

case of )_( GJPGML , )_( GUKGML , )_( GUKGJP  and )_( GUSGUK . This indicates that the short-

run persistence of shocks on the dynamic conditional correlations is greatest for GML with GJP 

at 0.159 ( 1 ), while the largest long-run persistence of shocks to the conditional correlations 

is 0.887 ( 21  + ) for GML with GUS. 

The VAR (5)-diagonal BEKK estimates of the conditional correlation between the 
volatilities of the growth rates of international tourist arrivals are given in Table 9.16 (see 
APPENDIX 1 Chapter 9 – subchapter 9.3.3). The estimates of the diagonal BEKK parameters 
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Chapter 10 

Volatility transmission, Comovements, and Spillovers Models with Applications 
to Financial Economics 

 

This chapter will apply the volatility model to study and analyse risks in financial assets 
(volatility transmission, comovements, and spillover models), especially energy financial 
instruments, including precious metals, and risk management to benefit investors in portfolio 
management. Finally, the ultimate aim is the least volatility and to make a profit to investors. 

10.1 Volatility Transmission in Oil Futures Markets and Carbon Emissions Futures1 

This sub-chapter examined the oil futures and the carbon emissions futures volatility 
comovements and spillovers for crude oil, gasoline, and heat oil, as well as carbon emissions. 
The data used in this study was the daily data from 2017 to 2022. The three Multivariate 
GARCH models, namely the VAR (3)-diagonal VECH, the VAR (3)-diagonal BEKK, and the 
VAR (3)-CCC, were employed. The empirical results showed that the estimates of the VAR (3)-
diagonal VECH and the VAR (3)-CCC parameters were statistically significant in a case 
involving oil except for carbon emissions. This indicates that the short-run persistence of 
shocks on the dynamic conditional correlations was greatest for RGASOLINE with RHEATOIL, 
while the largest long-run persistence of shocks to the conditional correlations for RCRUDE 
with RGASOLINE. At the same time, the VAR (3)-diagonal BEKK parameters were statistically 
significant in all cases. This indicates that the short-run persistence of shocks on the dynamic 
conditional correlations is greatest for RHEATOIL with RCO2, while the largest long-run 
persistence of shocks to the conditional correlations for RCRUDE with RCO2 and RHEATOIL 
with RCO2.  

Finally, we would choose the best model by considering the value of log-likelihood, AIC, 
SIC, and HQ. For the value of these figures, we should select the VAR (3)-diagonal BEKK 
model in volatility analysis of the oil futures and the carbon emissions futures returns. In 
addition, oil futures volatility impacts carbon emissions futures volatility. 

 
1 This sub-chapter is based on the findings of the published paper of Bunnag (2015). 
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Figure 10.9. The four daily precious metal returns 

 
The descriptive statistics are given in Table 10.9. The daily returns of silver 

(RSILVER) display the greatest variability with a mean of -4.81E-06%, a maximum of 0.1736%, 
and a minimum of -0.1869%. Furthermore, the skewness, the kurtosis, and the Jarque-Bera 
Lagrange multiplier statistics of all metal returns are statistically significant, implying that the 
distribution is not normal. 

Table 10.9. Descriptive statistics 

Returns RGOLD PALLADIUM RPLATINUM RSILVER 
Mean 8.34E-05 0.000517 -0.000145 -4.81E-06 
Median 0.000387 0.00136 0.0000 0.0000 
Maximum 0.0507 0.0696 0.0461 0.1736 
Minimum -0.0891 -0.1053 -0.0946 -0.1869 
Std. Dev. 0.0112 0.0189 0.0123 0.0238 
Skewness -0.8299 -0.3151 -0.5773 -0.6609 
Kurtosis 10.0943 5.3072 6.6583 13.2650 
Jarque-Bera 2687.414 289.6139 745.0484 5422.883 

 
Besides, return series will be used to construct the conditional mean and variances next. 
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Unit Root tests 

Standard econometric practice in the analysis of financial time series data begins with 
an examination of unit roots. The Augmented Dickey-Fuller (ADF) (Dickey and Fuller,1979) 
and Phillips-Perron (PP) (Phillips and Perron,1988) tests are used to test for all the precious 
metal returns under the null hypothesis of a unit root against the alternative hypothesis of 
stationarity. The results from unit root tests are presented in Table 10.10. The tests yield 
negative values in all cases for levels, such that the individual returns series reject the null 
hypothesis at the 1% significance level, so all returns are stationary. 

Empirical results 

An important task is to model the return series' conditional mean and variances. 
Therefore, the appropriate multivariate conditional volatility models given as VAR (1)-diagonal 
VECH, VAR (1)-diagonal BEKK, and VAR (1)-CCC models are estimated. The conditional 
mean comes from VAR (Vector Autoregression Model), which can display the source as 
follows. 

Vector autoregression model 

Let ),...,,( 21 = ntttt YYYY denote a 1k  vector of the precious metal return series 

variables. The basic vector autoregressive model of order p, VAR (p), is: 
,...221 tptptttt YYYcY +++++= −−−       ,,...1 Tt =                               10.16 

where t are kk   matrices of coefficients, c  is a 1k  vector of constants, and t  is a

1k  unobservable zero mean white noise vector process with the covariance matrix . 
As in the univariate case with AR processes, we can use the lag operator to represent 

VAR (p): 

 where  

If we impose stationarity on  in (10.16), the unconditional expected value is given by 

 

Lag Length Selection: A reasonable strategy for determining the lag length of the VAR 
model is to fit VAR (p) models with different orders max,...,0 pp = and choose the value of p, 

which minimizes some model selection criteria. Model selection criteria for VAR (p) could be 
based on Akaike (AIC), Schwarz-Bayesian (BIC), and Hannan-Quinn (HQ) information criteria. 

( ) ,tt cYL += p
pn LLIL −−−= ...)( 1

tY

.)...( 1
1 cI pn

−−−−=
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Before constructing the conditional mean, the first thing to do is find the right VAR 
model's lag, as shown in Table 10.11. From the various criteria are found to be selected lag 
that 1, 7, and 0. Most of them will choose lag 1. Therefore, we conclude that lag 1 should be 
suitable for the conditional mean. After all, multivariate conditional volatility models in this paper 
are already estimated. In the next step, we must explain each model's results and select the 
best model. 

The VAR (1)-diagonal VECH estimates of the conditional correlation between the 
volatilities of the four precious metal returns based on estimating the univariate GARCH (1,1) 
model for each precious metal are given in Table 10.12. The VAR (1) - diagonal VECH 
parameter 1  and 2 estimates are statistically significant in all cases. This indicates that the 
short-run persistence of shocks on the dynamic conditional correlations is greatest for RGOLD 
with RSIL. At 0.068 ( 1 ), the largest long-run persistence of shocks to the conditional 

correlations is 0.963 ( 21  + ) for RPAL, with RSIL. 
The VAR (1)-diagonal BEKK estimates of the conditional correlation between the 

volatilities of the four precious metal returns are given in Table 10.13. The estimates of the 
diagonal BEKK parameters 1 and 2 are statistically significant in all cases. This indicates 
that the short-run persistence of shocks on the dynamic conditional correlations is greatest at 
0.050 for RGOLD with RSIL., while the largest long-run persistence of shocks to the conditional 
correlations is 0.983 ( 21  + ) for RPAL with RSIL 

Finally, Table 10.14 presents the VAR (1)-CCC model 1==== srqp  estimates. 
The ARCH and GARCH estimates of the conditional variance between the four precious metal 
returns are statistically significant in all cases. The ARCH ( ) estimates are generally small 
(less than 0.2), and the GARCH (  ) estimates are generally high (more than 0.8) and close 

to one. Therefore, the long-run persistence (  + ), is generally one, indicating a near-long 

memory process. This indicates a near-long memory process. In addition, 1+   all 
metals satisfy the second and log-moment conditions, which is sufficient for the QMLE (quasi-
maximum likelihood) to be consistent and asymptotically normal. VAR (1)-CCC estimates the 
constant conditional correlation between RGOLD and RSIL, with the highest at 0.809. This 
indicates that the standardized shock on the constant conditional correlation for RGOLD with 
RSIL is 0.809. 

Furthermore, we will choose the best model by considering the value of log-likelihood, 
AIC, SIC, and HQ. From Tables 10.12, 10.13, and 10.14, we found that the VAR (1)-diagonal 
VECH model is the highest log-likelihood equal to 15321.96. AIC and HQ are the lowest, equal 
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to -25.159 and -25.080, respectively. Thus, we should choose the VAR (1)-diagonal VECH 
model in the volatility analysis of the precious metal returns. The results of this model are used 
to calculate the optimal two-metal portfolio weights and hedging ratios. 

However, we can show the movement of the conditional covariance and the conditional 
correlation of the four precious metal returns in each model according to Figures 10.10, 10.11, 
10.12, 10.13, and 10.14, respectively. 

Multivariate GARCH diagnostic tests 

The multivariate GARCH models consist of the VAR (1)-diagonal VECH, the VAR (1)-
diagonal BEKK, and the VAR (1)-CCC model. We can diagnostic check on the system residuals 
to determine the estimator's efficiency according to Table 10.15. We found that system 
residuals have no autocorrelations up to lag 6 and are not normally distributed. Therefore, the 
estimators of the multivariate GARCH model are efficient. 

Implications for portfolio designs and hedging strategies 

We provide two examples for constructing optimal portfolio designs and hedging 
strategies using our best estimates of model VAR (1)-diagonal VECH for the four metals. The 
first example follows Kroner and Ng (1998) by considering a portfolio that minimizes risk without 
lowering expected returns. If we assume the expected returns to be zero, the optimal portfolio 
weight of one metal (or asset) to the other in a two-metal (asset) portfolio is given by: 

ttt

tt
t hhh

hh
w

,22,12,11

,12,22
,12 2 +−

−
=                                                                10.17 

and 
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wifw

wif
w                          10.18 

where tw ,12 is the weight of the first precious metal in one dollar portfolio of two precious metals 

at the time t , th ,12  is the conditional covariance between metals 1 and 2, and th ,22 is 

the conditional variance of the second metal in the one-dollar portfolio tw ,121− . 

The average values of the tw ,12 based on VAR (1)-diagonal VECH estimates are 

reported in the first column of Table 10.16. For instance, the average value of tw ,12 a portfolio 

comprising gold and palladium, is 0.91. This suggests that the optimal holding of gold in one 
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dollar of gold/palladium portfolio is 91 cents and 9 cents for palladium. These optimal portfolio 
weights indicate that investors should have more gold than palladium and other precious 
metals to minimize risk without lowering the expected return. Regarding the two metals, 
palladium and silver, the optimal portfolio should be 72% to 28%, and investors should have 
more palladium than silver. 

We now follow the example given by Kroner and Sultan (1993) regarding risk-minimizing 
hedge ratios and apply it to our precious metals. A long (buy) position of one dollar taken in 
one precious metal should be hedged by a short (sell) position t in another precious metal t

to minimize risk. The rule to have an effective hedge is to have an inexpensive hedge. The t  

is given by: 

t

t
t h
h

,22

,12=                                                                                10.19 

where t  is the risk-minimizing hedge ratio for two precious metals; h12,t is the conditional 
covariance between metals 1 and 2; h22,t is the conditional variance of second metal. 

The second column of Table 10.16 reports the average values t . The results show that 

the most effective hedging among all the precious metals is hedging long (buy) palladium 
position by shorting (selling) platinum. The least effective hedging among all the precious 
metals is hedging long (buy) gold position by shorting (selling) platinum. 

This sub-chapter investigates volatility comovements and spillovers for gold, palladium, 
platinum, and silver. The results of volatility analysis are used to calculate the optimal two-
metal portfolio weights and hedging ratios. In addition, this paper estimated three popular 
multivariate GARCH models, namely the VAR (1) - diagonal VECH, the VAR (1) - diagonal 
BEKK, and the VAR (1)-CCC model, for the four metal returns.  

The empirical results showed that the multivariate GARCH parameter estimates are 
statistically significant in all cases. This indicates that the short-run persistence of shocks on 
the dynamic conditional correlations is greatest for RGOLD with RSILVER, while the largest 
long-run persistence of shocks to the conditional correlations for RPALLADIUM with RSILVER. 

In the next step, we will choose the best model by considering the value of log-likelihood, 
AIC, SIC, and HQ. Finally, we found that the best volatility and hedging ratios analysis model 
is the VAR (1)-diagonal VECH model.  The results from these optimal portfolio weights based 
on the VAR (1)-diagonal VECH estimates suggest that investors should have more gold than 
palladium and other precious metals to minimize risk without lowering the expected return. 
Such results can help manage the volatility of precious metals for investors.  
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Table 10.10. Unit Root tests 

Returns 
Augmented Dickey-Fuller Test 

Constant Constant and Trend 
I(0) I(1) I(0) I(1) 

RGOLD -35.78*** -19.40*** -35.85*** -19.39*** 
RSILVER -40.08*** -40.16*** -17.62*** -17.61*** 
RPLATINUM -33.86*** -17.34*** -33.872*** -17.33*** 
RPALLADIUM -34.89*** -17.86*** -34.90*** -17.85*** 

Returns 
Phillips-Perron Test 

Constant Constant and Trend 
I(0) I(1) I(0) I(1) 

RGOLD -35.85*** -559.61*** -35.94*** -559.25*** 
RSILVER -40.17*** -40.34*** -417.25*** -416.86*** 
RPLATINUM -33.87*** -399.32*** -33.882*** -398.94*** 
RPALLADIUM -35.01*** -387.25*** -35.033*** -386.97*** 

Note: *** denote significance at the 1% level 

Table 10.11. Lag order selection 

Lag LR FPE AIC SC HQ 
0 NA 3.33e-16 -24.286 -24.269* -24.280 
1 113.029 3.11e-16* -24.353* -24.269 -24.332* 
2 14.492 3.16e-16 -24.339 -24.187 -24.282 
3 18.577 3.19e-16 -24.328 -24.108 -24.245 
4 16.192 3.24e-16 -24.315 -24.028 -24.207 
5 18.238 3.27e-16 -24.304 -23.949 -24.170 
6 23.029 3.30e-16 -24.297 -23.875 -24.138 
7 39.359* 3.27e-16 -24.304 -23.814 -24.119 
8 14.863 3.32e-16 -24.290 -23.733 -24.080 

Note: * indicates lag order selected: LR= Sequential modified LR test statistic, FPE=Final prediction 
error, AIC=Akaike information criterion, SC=Schwarz information criterion, HQ=Hannan-Quinn 
information criterion 
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