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Abstract 

This paper conducts an extensive analysis of Bitcoin return series, with a primary focus on three volatility 

metrics: historical volatility (calculated as the sample standard deviation), forecasted volatility (derived from 

GARCH-type models), and implied volatility (computed from the emerging Bitcoin options market). These measures 

of volatility serve as indicators of market expectations for conditional volatility and are compared to elucidate their 

differences and similarities. The central finding of this study underscores a notably high expected level of volatility, 

both on a daily and annual basis, across all the methodologies employed. However, it's important to emphasize the 

potential challenges stemming from suboptimal liquidity in the Bitcoin options market. These liquidity constraints 

may lead to discrepancies in the computed values of implied volatility, particularly in scenarios involving extreme 

money or maturity. This analysis provides valuable insights into Bitcoin's volatility landscape, shedding light on the 

unique characteristics and dynamics of this cryptocurrency within the context of financial markets. 
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JEL Classification: G12: G17; C22; E42. 

Introduction  

While Bitcoin reigns as the world's most capitalized and traded cryptocurrency, its status as a financial asset 

remains a subject of controversy. This controversy stems from the frequent and substantial fluctuations in its value, 

which understandably concern investors (Yermack, 2015; Bouoiyour & Selmi, 2015). 

Recently, numerous research has attempted to determine the fair value and to trace the bubbles in the Bitcoin price 

series. The previous literature focuses on detecting the level of transaction efficiency in cryptocurrency markets 

(Cheung et al., 2015; Cheah & Fry, 2015; Bartos, 2015; Urquhart, 2016; Bouoiyour et al., 2016; Ciaian et al., 2016; 

Balcilar et al., 2017). These prior studies also discuss the reasons behind the volatility of bitcoin. One of the reasons 

is its spread which is used for speculative purposes and which increases it average volatility while also exhibiting 

fat tail behaviour (Cheah & Fry, 2015; Dyhrberg, 2016; Corbet et al., 2018; Hafner, 2020; Osterrieder et al., 2017; 

Phillip et al., 2018, Gaies et al., 2024). 
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Furthermore, news, in particular geopolitical events and governments’ willingness to regulate or tax 

cryptocurrencies have been observed as prominent factors of volatility for bitcoins. One significant recent regulatory 

development occurred in 2015 when the US Commodity Futures Trading Commission (CFTC) officially categorized 

Bitcoin and other digital currencies as commodities. It is noteworthy that news events, which often trigger market 

panic, have a dual impact on volatility. On one hand, the emergence of negative or unexpected news significantly 

dampens investor expectations, leading to increased selling of the cryptocurrency. Conversely, this selling 

behaviour reduces the overall supply of Bitcoin in circulation, potentially driving up its value due to heightened asset 

scarcity. Since the volume of transactions is still much smaller than in traditional markets, Bitcoin can be subject to 

manipulation or influence by large holders who possess huge shares of the total circulating cryptocurrency, Thus, 

when these big players make any move, it results in severe volatility of cryptocurrencies. Moreover, many authors 

have noticed that the price of Bitcoin is subject to factors that differ from traditional financial instruments. Kristoufeck 

(2013) and Glaser et al. (2014) found a link between searches on Google and the Bitcoin price trend. Garcia et al. 

(2014) demonstrated that word of mouth on social media and information on Google trends have a substantial 

influence on the price variations of Bitcoin. Letra (2016) used a forecasting model to study daily quotations and 

search trends on Google, Wikipedia and Twitter and found that Bitcoin prices are influenced by its popularity. Klein 

et al. (2018) identified a relationship between the volatility in Bitcoin prices and the fear of cyberattacks. 

Previous literature predominantly focuses on analysing Bitcoin price volatility primarily from an investment 

perspective. This research contributes to and extends the existing body of knowledge by proactively forecasting 

expected future volatility within the cryptocurrency market. It achieves this by leveraging historical price data and 

financial derivatives that are currently actively traded. 

This study is conducted while considering various existing approaches to calculating volatility:  

▪ Future volatility, which represents the true variability of an asset over a forthcoming period, albeit 

unobservable and ascertainable only retrospectively.  

▪ Historical volatility, often computed as the standard deviation of past returns, reflecting an asset's price 

distribution over a prior period.  

▪ Forecasted volatility, entails predicting future volatility over specific timeframes using mathematical 

methodologies, frequently employing GARCH models (Engle, 1982; Bollerslev, 1986; Hung et al., 2020).  

▪ Implied volatility, derived from option prices, signifies the market's anticipation of future volatility through 

derivative markets (Natenberg, 1994).  

Given the inherent challenges in directly observing future volatility, this research concentrates on the 

analysis and comparison of the other three forms of volatility. It aims to assess the associated investment risks in 

the context of Bitcoin, with a particular emphasis on implied volatility. 

Cryptocurrency derivatives markets were first introduced in in 2017. However, after two years the number 

of transactions has reached a peak (Alexandre, 2019). The reason for investigating derivatives markets for volatility 

perceived by market players is because of the huge expansion of the Cryptocurrency derivatives markets and total 

lack of research in this area. The start-up LedgerX is one of the most widespread online platforms (together with 

Deribit and Quedex) with BTC/USD options quotations (Zaitsev, 2019). This research focuses on this platform, 

given the sufficiently high number of transactions taking place on it. LedgerX was the first Bitcoin option trading 

platform in the USA, authorized in July 2017 by the CFTC as a Swap Execution Facility and Derivatives Clearing 

Organization, in order to provide a higher level of transparency, predictability and security for option contracts 

(Investment using virtual ……, 2015, July). The other reason for this choice lies in the fact that the COVID-19 

pandemic and the war in Ukraine have led to global economic and energy crises, respectively. Since the beginning 

of 2020, the global economy has been in an abnormal state. Accordingly, we wish to conduct a study that is 
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representative of the normal state of the global economy and consequently utilize data from before the COVID-19 

pandemic. There is an interesting characteristic associated with implied volatility. Regarding the relationship 

between option moneyness, which signifies the distance between the current underlying price and the strike price, 

and implied volatility, it's worth noting that while, for most financial instruments, volatility typically varies depending 

on the strike price – often with lower values for at-the-money (ATM) options and higher values for options with 

exercise prices significantly distant from the current market price – this distinct trend in volatility does not appear to 

be supported by empirical evidence in the context of Bitcoin. 

Implied volatility tends to remain relatively consistent across various strike prices, suggesting that, despite 

the typically high fluctuations associated with Bitcoin investments, the volatility component adequately 

encompasses the inherent risks of the investment. Consequently, additional risks stemming from potential 

asymmetries in volatility behaviour when using derivatives should not be a primary concern (Brown, 2018). 

However, it's worth noting that some authors argue that a skew profile is beginning to emerge, indicating higher 

volatility at lower strikes (Crypto derivatives …., November, 2018). 

The comparison of the above-mentioned three different forms of volatility can help extract the main 

expectations about the future evolution of the cryptocurrency price according to the market players which is in line 

with the previous studies (Akgiray, 1989; Chiras & Manaster, 1978; Beckers, 1981; Day and Lewis, 1992; Engle & 

Mustafa, 1992; Peng et al., 2024).  

However, previous studies have primarily applied the mentioned approaches in the context of traditional 

financial markets. This study contributes to the literature by extending these models and approaches to assess the 

risk associated with financial investments in cryptocurrencies.  

Our research design is based on the premise of selecting a specific time point for analysing the out-of-

sample forecasting of Bitcoin price volatility. We have opted to examine a time period preceding the Covid-19 

pandemic, as it coincided with economic crises. Subsequently, the emergence of the war in Ukraine led to an 

energy crisis. Both events marked significant disruptions in the markets, portraying unique states. Our objective is 

to offer an analysis that reflects a more typical or 'normal' market condition. 

The rest of the paper is organized as follows. Section 1 presents the data along with relevant statistics. We 

explain the methods in Section 2. Results are presented and discussed in Section 3. The paper concludes with a 

summary in last section. 

1. Data Description 

The bid-ask daily prices of the options traded within the timeframe of January 1, 2019, to July 31, 2019, 

were acquired upon request directly from the online platform LedgerX. LedgerX also furnished the historical series 

of the underlying BTC/USD, spanning from April 28, 2013, to July 31, 2019 (refer to Figure 1). It's important to note 

that both the options and the underlying asset are quoted in US dollars. 

Since the cryptocurrency market operates 24/7, the daily data provided in this study corresponds to the 

prices recorded at 4 p.m. each day. The data exhibited no instances of missing data, eliminating the need for any 

missing data treatment. Utilizing the historical price series of Bitcoin, we calculated the logarithmic return, as 

depicted in Figure 1. 

  



2024, Volume III 
 

 
10 

Figure 1. Historical Bitcoin prices  

 

The preference for logarithmic return over arithmetic return is well-established, especially when dealing with 

daily or intra-day observations. Logarithmic return offers the advantage of symmetrically representing price 

increases and decreases based on the same multiple, differing only by their respective signs. Furthermore, unlike 

price data, the historical series of logarithmic returns can be considered stationary, as noted by Pichl & Kaizoji 

(2017). As Figure 2 illustrates, both the returns and the rolling mean and standard deviation exhibit considerable 

variability over time, indicative of significant fluctuations within the cryptocurrency's historical series. Given the 

relatively recent emergence of the Bitcoin derivatives market and the substantial variability in the underlying 

distribution over time, our research did not encompass the entirety of the available price dataset. Instead, we 

concentrated our analysis on a sufficiently expansive yet closely proximate time frame, specifically spanning from 

January 1, 2018, to July 31, 2019. Consequently, our calculation of implied volatility exclusively relied on this 

specific data frame. 

Figure 2. Historical series of Bitcoin log returns and rolling moments 
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When conducting a comparative analysis to identify differences between statistics computed across the 

entire historical series and those for the limited time spans of 2018-2019 and 2019 (as illustrated in Figure 3 and 

Table 1), it becomes evident that certain extreme events were excluded from these periods. As a result, several 

distributional characteristics experienced significant alterations. In an effort to strike a balance between the choice 

of the time window and its impact on information content, complexity, and redundancy, our research selected the 

aforementioned one-year-and-seven-month period as appropriate for calibrating volatility forecasting models.  

Figure 3. Comparison of 6-year and 1-year logarithmic return histograms 

 
 

This decision aimed to exclude extreme historical events that could have introduced significant distortions 

in the results for the future period under consideration. As indicated in Table 1, which provides an overview of the 

key characteristics of the return distribution for the period 2018-2019, the data exhibit a slight positive skewness 

and a high kurtosis value. Consequently, it is evident that the Bitcoin series cannot be accurately approximated by 

a normal distribution, as evidenced by the significantly high value of the Jarque-Bera normality test. 

Table 1. Comparison between 6-year, 2-year and 1-year distribution characteristics 

 Period 2014/2019 Period 2018/2019 Period 2019 

N. observations 2039 578 213 

Mean 0.0013 -0.0005 0.0048 

Median 0.0018 0.0017 0.0025 

St deviation 0.0396 0.0415 0.0386 

Skewness   -0.3757 -0.3330 0.0193 

Kurtosis 8.3713 5.6018 6.8119 

Min   -0.2376 -0.1846 -0.1518 

Max 0.2251 0.1600 0.1600 

Jarque-Bera stat  2,506.70 176.21 133.37 
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Regarding the examination of option prices, it is essential to highlight that during our data collection period, 

LedgerX's platform experienced relatively low liquidity levels, particularly for options with positions that were either 

significantly in or out of the money. This resulted in notably wide bid-ask spreads for most of the maturities analysed, 

as depicted in Figure 4.  

Figure 3. Open interests for Bitcoin options 

 
 

Further investigation into the liquidity status of the market on the final quotation day and its influence on the 

implied volatility term structure is conducted in Section 2. 

Finally, we applied the Augmented Dickey-Fuller test for non-stationarity (Dickey & Fuller, 1979) to the 

Bitcoin log returns (Figure 2). The results indicated that non-stationarity must be rejected. Subsequently, we 

analysed the heteroscedasticity present in the series using an ARCH test (Engle, 1982) for homoscedasticity, in 

line with the prevailing literature. Specifically, both forms of ARCH tests, the Portmanteau Q test, and the Lagrange 

Multiplier test conducted in R, rejected the null hypothesis of homoscedasticity, with p-values close to zero, for both 

the entire historical Bitcoin series and the 2018-2019 period. We also emphasize that, as determined by a t-test, 

the means of the Bitcoin log returns considered in this study are not statistically significantly different from zero. 

2. Research Methodology 

The first form of volatility calculated for the purposes of this analysis is the historical one, understood as 

simple standard deviation adjusted for the sample (Eq. 1). 

s = √
∑ (xi−xavg)2N

i=1

N−1
              (1) 

This measure has been calculated on a daily basis using a 30-day rolling window for the period 2018-2019. 

For the volatility forecasting, a location scale model for returns’ decomposition (Eq. 2) has been used: it allows the 

asset performances to be separated into different components that can be modelled separately in order to obtain 

a better forecast for the entire return value.  

Rt+1 = σt+1zt+1 + μt+1 with  zt+1~i. i. d. D(0,1)           (2) 



Issue 1(5), 2024 
 

 13 

Regarding the component represented by the mean process, especially for short time horizons like daily 

returns, it is reasonable to assume an average value of returns equal to zero, with the process being primarily 

influenced by the standard deviation (Christoffersen, 2011). As mentioned earlier and supported by the t-test, we 

proceed to model the variance without considering the process underlying the mean itself.  

The conditional variance fitting procedure has been carried out with a standard GARCH model (Bollerslev, 

1986), built considering p lags for squared returns – filtered from the mean process, as considered equal to zero – 

and q lags for the variance from the previous periods (Eq. 3). It is important to underline that GARCH models detect 

both the value of conditional volatility – i.e., volatility calculated on the basis of a specific information set, in this 

case the data from 2018 - 2019 and the unconditional volatility, which lets the model consider the fact that the 

average long-term variance tends to be relatively stable over time and gives an idea of how the variance can move 

in the long run given the current conditions (Eq. 4). The persistence of the model (Eq. 5) measures the impact of 

the current return on unconditional variance for future periods and must be lower than one to guarantee the 

existence and non-explosivity of the unconditional volatility. 

σt+1
2 = ω + ∑ αiRt+1−i

2q
i=1 + ∑ βjσt+1−j

2p
j=1             (3) 

σ2 =
ω

1−P
                (4) 

P = ∑ αi + ∑ βj
p
j=1

q
i=1                (5) 

Several extensions of the GARCH model have been introduced later to take into account particular 

distribution characteristics, which could be relevant in carrying out the analysis of Bitcoin. The integrated GARCH 

model (Engle & Bollerslev, 1986) has the particularity that P = 1, i. e., it assumes that a given shock on the 

conditional variance is persistent for any future time horizon thus becoming a relevant component in the long run. 

For this reason, it is particularly useful if the conditional variance is strongly autocorrelated in order to detect the 

presence of long-term memory in Bitcoin series. In addition, GARCH models capable of weighing positive and 

negative returns differently have been used in order to capture the leverage effect explained in Section 1. The 

Glosten-Jagannathan-Runkle (GJR – Glosten et al., 1993) GARCH introduces in the model an indicator variable 𝐼𝑡 

that assumes unitary value if the return is negative and zero otherwise; the higher the coefficient γ is, the greater 

the impact of the asymmetrical effect on the final result (Eq. 6).  

σt+1
2 = ω + ∑ (αiRt+1−i

2 + γiIt+1−iRt+1−i
2 )

q
i=1 + ∑ βjσt+1−j

2p
j=1           (6) 

The exponential GARCH model (Nelson, 1991; Bunnag, 2023) uses the coefficient α to capture the sign 

and γ to observe the size effect of leverage (Eq. 7). This model takes advantage of the logarithmic forms to ensure 

a positive variance without putting constraints on the values assumed by the coefficients. 

ln (σt+1
2 ) = ω + ∑ (αiRt+1−i + γi[|Rt+1−i| − E|Rt+1−i|])q

i=1 + ∑ (βjln (σt+1−j
2 )

p
j=1        (7) 

The asymmetric power ARCH model (Ding et al., 1993) is able to take into account both the leverage and 

the Taylor effect (Taylor, 2nd Ed. 2007) – named after the author who noted that the autocorrelation in absolute 

returns is usually larger than when computed on squared returns (Eq. 8). The term δ ∈ R+ represents a Box-Cox 

transformation of the conditional variance and the coefficient γ is expressive of the leverage effect. 

σt+1
δ = ω + ∑ αi(|Rt+1−i| − γiRt+1−i)

δq
i=1 + ∑ βjσt+1−j

δ  
p
j=1          (8) 
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Finally, consistently with the findings in literature related to the existence of structural breaks and regime 

changes in Bitcoin series, a Markov-switching GARCH (Haas et al., 2004) has been fitted (Eq. 9). It allows the 

parameters of the model for conditional variance to vary over time according to a latent discrete Markov process 

(𝑠𝑡 represents a two-states Markov chain depending on a given transition matrix), i.e., it allows to quickly adapt the 

predictions to changes in the level of unconditional volatility.  

σt+1
2 = (ω1 + ∑ α1iRt+1−i

2q
i=1 + ∑ β1jσt+1−j

2p
j=1 ) I(st = 1) + (ω2 + ∑ α2iRt+1−i

2q
i=1 +

∑ β2jσt+1−j
2p

j=1 ) I(st = 2)              (9) 

All of the previously mentioned models were computed considering a maximum of 3 lags both for squared 

returns and conditional variances. For these purposes, the fitting process of the GARCH models (sGARCH, 

iGARCH, GJR-GARCH, eGARCH) has been done using the ruGARCH package in R (Ghalanos, 2019). The fitting 

of the Markov-switching models has been carried out using the MS-GARCH package in R (Ardia et al., 2019). 

The goodness of fit of the different models can be verified by computing the respective log-likelihood (LL) - 

calculated on the basis of the probability of observing a given sample production conditioned to the values assumed 

by the parameters estimated in the model – and by calculating Akaike (AIC, Eq. 10 – Akaike, 1974) and Bayesian 

(BIC, Eq. 11 – Schwarz, 1978) information criteria – considered as more consistent than the first method, since 

they aim to balance the goodness of adaptation of the estimated model and its complexity measured by the number 

of parameters. Although a likelihood-ratio test (Eq. 12) is carried out to determine whether the use of an extended 

model brings significant benefits compared to a simpler one despite the increased complexity, it can be said that 

the best mody, xclöv-el among the set of plausible models considered is the one which minimizes AIC and BIC. 

AIC = −2 ∙ LL + 2 ∙ (p + q)            (10) 

BIC = −2 ∙ LL + ln (n. param) ∙ (p + q)          (11) 

LR = 2(LLextended mod) − LLstandard mod          (12) 

It should be noted that in this study, priority is given to the results obtained by minimizing the Bayesian 

Information Criterion (BIC).  

As for the third measure, implied volatility represents the value s that, ceteris paribus, equals the theoretical 

value given by the Black-Scholes option pricing model (Black & Scholes, 1973) to the real market price of the option 

(Eq. 13). Eq. 14 shows the Black-Scholes formula for call options, while the model for puts can be derived using 

the put-call parity procedure (Eq. 15). 

Cmkt − CBSM(σIV) = 0             (13) 

CBSM(S, t) = StN(d1) − Ke−r(T−t)N(d2) 𝑤𝑖𝑡ℎ d1 =
ln

St
K

+(r+
1

2
σ2)(T−t)

σ√T−t
 𝑎𝑛𝑑 d2 = d1 − σ√T − t    (14) 

CBSM(S, t) − PBSM(S, t) = St − Ke−r(T−t)          (15) 

The put-call parity formula establishes a unique relationship between the price of a call option and a put 

option with the same strike price and time to maturity, assuming the absence of arbitrage opportunities (Hull, 2022).  
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The primary assumptions underpinning the Black-Scholes model include:  

▪ the risk-free interest rate remains constant. 

▪ the statistical process governing logarithmic returns follows a Brownian geometric motion, akin to a 

random walk with drift,  

▪ both the drift rate and volatility remain constant,  

▪ the underlying asset does not pay dividends,  

▪ there are no arbitrage opportunities in the market,  

▪ borrowing and lending can be done in any amount at the risk-free rate,  

▪ buying and selling any quantity of the underlying asset is possible including short selling,  

▪ the market is frictionless at the option's maturity, with no commissions, taxes, or transaction costs.  

Despite the stringent nature of these fundamental assumptions in the Black-Scholes model, many derivative 

platforms, including LedgerX, employ it for pricing options related to cryptocurrencies (Del Castillo, 2017, Akron, et 

al., 2020). 

Since the real process of the underlying does not threaten the basic intuitions of the model (and its 

computational simplicity, which make it one of the most widely used pricing models nowadays), the use of the 

Black-Scholes formula – and the related possibility of extracting the implied volatility from it – has been considered 

acceptable for this research. 

Typically, implied volatility is calculated by market participants starting from the mid-price, i.e., the average 

of the current bid and ask quoted prices, in order to summarize in a single value the expectations of sellers and 

buyers. However, in the presence of a very wide bid-ask spread, market professionals prefer to calculate two 

different forms of implied volatility in order to be able to take into account the market liquidity risk (Should there be 

two implied volatilities …, 2016, March). Furthermore, due to significantly different prices, calls and puts have also 

been kept separate in order to analyse them individually and identify any possible intrinsic patterns in implied 

volatility.  

Despite starting from the put-call parity formula implied volatility for calls and puts with same strike and time 

to maturity should be equal, in reality this does not happen and some graphical differences occur both because of 

the market liquidity level and the drift parameter (𝑟 in Eq. 14), that - typically positive - inevitably favours with the 

passage of time the moneyness of call options in comparison to puts. 

The typical representation of implied volatility takes the form of a 3D surface that considers – for each option 

used for the calibration – the strike price, the time to maturity and the related implied volatility. Please note that the 

market liquidity level is not explicitly represented in it: theoretically, it does not have an effect on the surface, as a 

high level of liquidity is implicitly assumed. For the following analyses, it is necessary to mention that, in cases of 

low liquidity such as for Bitcoin, the surface of implied volatility can be distorted or unstable. 

A final mention should be made in relation to the aim of observing the variation in implied volatility over time, 

so that a fourth dimension would be necessary to indicate the passage of the quotation days. Given the impossibility 

to use this representative form, only the options with an appropriate number of transactions and bid-ask spread 

throughout the year have been used for this aim, in order to ensure the representation of a volatility surface with a 

sufficient number of points. In this way, it has been possible to observe the evolution of the implied volatility with 

the passing of the days in relation to every strike price (fixing therefore the fourth dimension related to the time to 

maturity). 
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3. Results and Discussion 

The values of average historical daily volatility in Table 2 are characterized by a great variability during the 

year, with minimums at the end of 2018 and the beginning of 2019. The daily volatility calculated on 31/07/2019 is 

rather high (0.0533) and expressive of the presence of large fluctuations in Bitcoin prices in the previous 30 days 

used for the computation. Projecting this value in the future, assuming a relative stability in volatility and using the 

square root of time rule to scale the computed daily risk factor over longer periods of time, the monthly and 

annualized values for historical volatility would be 0,2919 and 1,018 respectively. The conversion of daily volatility 

to a longer time horizon (monthly or yearly) is done by multiplying it by the root of the number of days contained in 

that frame. These standard deviations are very high and, if verified, would lead to significant fluctuations in the price 

of Bitcoin (note in fact that the annual value can exceed 100%). It is however important to underline that the rule 

used for the volatility conversion could theoretically be applied only in the presence of independent and identically 

distributed returns (Danielsson & Zigrand, 2006). Since this condition is not verified for the Bitcoin series, the 

calculated estimate may not be consistent with the real volatility extractable from the market for longer time 

horizons. In any case, the fact that the Black-Scholes model for the calculation of implied volatility also considers 

the square root of the time to scale the risk factor allows this calculation to be considered significant at least for 

comparative purposes. 

Table 2. Rolling historical daily volatility with a 30-day rolling window 

Date of measurement Historical volatility 

2018-02-01 0.0658 

2018-03-01 0.0697 

2018-04-01 0.0438 

2018-05-01 0.0447 

2018-06-01 0.0282 

2018-07-01 0.0358 

2018-08-01 0.0327 

2018-09-01 0.0284 

2018-10-01 0.0229 

2018-11-01 0.0146 

2018-12-01 0.0506 

2019-01-01 0.0444 

2019-02-01 0.0255 

2019-03-01 0.0260 

2019-04-01 0.0119 

2019-05-01 0.0348 

2019-06-01 0.0460 

2019-07-01 0.0544 

2019-08-01 0.0533 
 

Regarding the fitting of forecasting models and comparing the results obtained from various models such 

as standard GARCH, exponential GARCH, GJR-GARCH, asymmetric power ARCH, and integrated GARCH, the 

information criteria confirm that the standard GARCH (1,1) model performs the best, with AIC and BIC values of -

3.66 and -3.64, respectively. However, it's important to note that the differences between these models in terms 

of information criteria are quite small (Table 3). 
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Table 3. Information criteria for one-regime GARCH models 

Standard GARCH 

AIC 
Q 

BIC 
Q 

1 2 3 1 2 3 

p 

1 -3.6622 -3.6597 -3.6528 

p 

1 -3.6396 -3.6295 -3.6151 

2 -3.6591 -3.6563 -3.6563 2 -3.6290 -3.6186 -3.6110 

3 -3.6563 -3.6528 -3.6493 3 -3.6185 -3.6075 -3.5965 

Exponential GARCH 

AIC 
Q 

BIC 
Q 

1 2 3 1 2 3 

p 

1 -3.6551 -3.6516 -3.6588 

p 

1 -3.6249 -3.6139 -3.6136 

2 -3.6519 -3.6487 -3.6604 2 -3.6067 -3.5959 -3.6000 

3 -3.6559 -3.6556 -3.6531 3 -3.5956 -3.5877 -3.5777 

Glosten-Jagannathan-Runkle GARCH 

AIC 
Q 

BIC 
Q 

1 2 3 1 2 3 

p 

1 -3.6588 -3.6563 -3.6493 

p 

1 -3.6286 -3.6185 -3.6041 

2 -3.5893 -3.6510 -3.6496 2 -3.5441 -3.5982 -3.5892 

3 -3.6482 -3.6447 -3.6412 3 -3.5878 -3.5768 -3.5657 

Integrated GARCH 

AIC 
Q 

BIC 
Q 

1 2 3 1 2 3 

p 

1 -3.6356 -3.6351 -3.6296 

p 

1 -3.6206 -3.6125 -3.5995 

2 -3.6322 -3.6317 -3.6294 2 -3.6095 -3.6015 -3.5917 

3 -3.6313 -3.6293 -3.6260 3 -3.6011 -3.5916 -3.5807 

Asymmetric power ARCH 

AIC 
Q 

BIC 
Q 

1 2 3 1 2 3 

p 

1 -3.6621 -3.6609 -3.6605 

p 

1 -3.6243 -3.6156 -3.6077 

2 -3.6557 -3.6550 -3.6577 2 -3.6029 -3.5947 -3.5898 

3 -3.6487 -3.6486 -3.6508 3 -3.5808 -3.5731 -3.5678 

The optimal parameters for the chosen GARCH model (Table 4) clearly indicate a significant relationship 

between the current volatility and its past values (β coefficient), whereas the ARCH component of squared returns 

(captured by α) plays a relatively marginal role. The high persistence value of 0.9477 suggests the presence of 

long-term memory or high persistence in Bitcoin volatility, consistent with findings in the existing literature. 

Table 4. Estimated optimal parameters for GARCH (1,1) 

Optimal standard GARCH (1,1) 

Model parameters Coefficient P-value 

Omega   0.0001 0.0038 

Alpha 0.0833 0.0008 

Beta 0.8644 0.0000 

Log-likelihood and information criteria 

LL 1,061.39 

AIC       -3.6622 

BIC       -3.6396 
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Based on the estimated parameters for the optimal model, it is possible to forecast the expected daily 

volatility over a future period of one year. Figure 5 shows the estimates made using a fixed window perspective, 

i.e., without updating the model over time and simply proceeding to the volatility forecast over the considered time 

horizon. For the sake of completeness, it should be noted that a different approach could be used, a mobile window 

estimate, which updates the parameters of the model on the basis of subsequent estimates of daily volatility, so 

that the most recent forecasts are themselves used for the calibration of the model. In the case of fixed window, 

the estimates of volatility tend to converge towards the value of long-run average in the long term (this clearly 

happens in Figure 5).  

Figure 4. 1-year daily conditional volatility forecast with GARCH (1,1) 

 

However, this does not happen in the case of mobile window but the disadvantage here comes from a strong 

influence from no longer real but only estimated values for the long-term estimates. For both of the two cases, the 

reliability of the forecasts is, thus, higher in the short term. Even though the standard GARCH (1,1) represents the 

optimal model on the basis of the information criteria and all the models tend to confirm the predominance of the 

parameter 𝛽 over 𝛼, it is interesting to analyse the leverage effect results obtained for the optimal order of the other 

GARCH models (Table 5). 

Table 5. Estimated optimal parameters for the GARCH models when modelling leverage effect 

Exponential GARCH (1,1) 

  Coefficient P-value 

Omega     -0.5676 0.0000 

Alpha 0.0025 0.9208 

Beta 0.9094 0.0000 

Gamma 0.1995 0.0000 

GJR-GARCH (1,1)  

  Coefficient P-value 

Omega   0.0001 0.1224 

Alpha 0.0849 0.0733 

Beta 0.8643 0.0000 

Gamma   -0.0026 0.9529 

Asymmetric power ARCH (1,1) 

  Coefficient P-value 

Omega   0.0000 0.9418 

Alpha 0.0129 0.0570 

Beta 0.9473 0.0000 

Gamma 0.0350 0.6018 

Delta 3.4964 0.0000 
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As for the eGARCH model, the coefficient 𝛾 which expresses the size of leverage effect - is positive and 

quite large, contrary to what it is expected to be in the presence of a typical asymmetric effect (Chang & McAleer, 

2017); its positivity implies ceteris paribus an increase in volatility when the squared return is higher than its 

expected value. Consistent with the current literature, one can therefore confirm an inverse leverage effect for the 

Bitcoin process. However, the GJR-GARCH model does not seem to confirm the leverage effect found in the 

previous model: the 𝛾 value is in fact negative and very small and has an insignificant  p-value. Finally, the apARCH 

model also shows a positive value for γ which is not statistically significant. Therefore, in this research, it is not 

possible to demonstrate the existence of a measurable leverage effect in the Bitcoin series through the GARCH 

models with certainty.  

These models essentially consider two regimes in conditional volatility, particularly in terms of the leverage 

effect. However, the Markov-switching GARCH model (MS-GARCH) offers more flexibility in modelling different 

states of volatility, and it is not limited to just two regimes. Nonetheless, for the purposes of our analysis, we proceed 

with the assumption of two regimes as the standard specification when applying the MS-GARCH model, which 

provides a more intuitive interpretation. The optimal MS-GARCH model, derived through an iterative optimization 

process, represents a dual regime characterized by two standard GARCH sub-models, as shown in Table 6, which 

presents the parameters and likelihood measures. It's worth noting that we observed only weak significance in the 

coefficient estimates for this MS-GARCH model.  

Table 6. Estimated optimal parameters for the optimal MS-GARCH model 

Optimal Markov-switching GARCH 
 Standard GARCH (1) Standard GARCH (2) 

Omega 0.0000 0.0002 

Alpha 0.0334 0.0528 

Beta 0.9084 0.9319 

P 0.7721 0.5804 

 Transition matrix 

  t+1|k=1 t+1|k=2 

t|k = 1 0.7721 0.2279 

t|k = 2 0.5804 0.4196 

Stable probabilities 

State 1 0.7181 

State 2 0.2819 

Log-likelihood and information criteria 

LL   1,146.9371 

AIC - 2,277.8742 

BIC - 2,242.9976 
 

When analysing the estimated coefficients, it can be noticed that the two sub-models have a clear 

predominance of the β parameter compared to 𝛼, even if the second state takes into consideration a higher level 

of persistence. It is interesting to underline how-even in the presence of multiple regimes – the optimal framework 

to model the volatility of returns seems to be a standard GARCH model, testifying that there is no need to use more 

complex extensions. The coefficients of the two sub-models are close to those computed for GARCH (1,1) in Table 

4, but it should be noted that in both of them α is lower and β is higher, further reinforcing the already very high 

influence of the past volatility values in determining the estimated volatility for the future. When forecasting daily 

volatility for the upcoming year using the calibrated Markov-switching model (Figure 6), it becomes evident that the 

conditional volatility tends to converge towards its unconditional value, which is close to the value predicted by the 
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optimal GARCH (1,1) model. However, the important advantage of the MS-GARCH model lies in its flexibility for 

forecasting over longer time horizons, as depicted in the comparison between Figure 5 for GARCH and Figure 6 

for MS-GARCH. For the sake of comparison, it’s worth noting that the predicted long-term value for daily fluctuations 

is lower than the one estimated using historical volatility, which is strongly tied to its last computation on July 31, 

2019. Regarding the approach for the analysis of implied volatility, as anticipated in Section 3, bid and ask prices 

are kept separate to form two different charts, given the low liquidity of the market and the size of the spread. 

Figure 7. Estimated optimal parameters for the optimal MS-GARCH model 

 

Fixing the observation date to the last available day of quotation (31/07/2019), the structure of the volatility 

can be seen in in 2D (strike price on x-axis and implied volatility on y-axis) representing the different maturities as 

level curves so as to make them more easily visually comparable (Figure 7).  

Figure 5. Implied volatility smile per time to maturity (separate for call/put and bid/ask prices) 
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As can be seen from the charts, the options quoted on LedgerX cover a very wide range of strike prices – 

even reaching the level of $100.000, not shown since it has an open interest close to zero due to the extreme 

moneyness – and expiration dates. Given the value of the underlying equal to $9.767,60 on 31/07/2019 and 

although the trend of the curves is unstable and not clearly-defined because of the low liquidity, higher values for 

underlying prices very distant from the actual level and lower volatility in correspondence of approximately ATM 

options can be noticed as almost all the volatility graphs tend to assume the typical smiling shape. The curves 

related to options with maturities of less than one month show a very unstable and anomalous trend, confirming 

that – as described in Section 2 – the calculation of volatility on very short-term options is strongly discouraged 

given the strong impact of any new information and the absence of residual time to dampen its effects.  

Similarly, options with very long maturities have an unusual pattern compared to others, resembling flat 

curves that do not substantially differentiate according to the strike price. This trend, contrary to very short-term 

options, is related to the fact that the market tends to not incorporate highly sensitive information into these prices, 

assuming that it can automatically reabsorb over time. 

As for the shape of the smiles, it must be said that they tend to a skew: for very high strike prices – for which, 

given the same underlying level, calls are OTM and puts are ITM – the volatility tends to be significantly lower than 

for options with smaller strikes. One of the explanations underlying the formation of the skewed shape is related to 

the log-normal returns assumption of Black-Scholes model, which in reality often does not occur; indeed, the 

underlying distributions for Bitcoin are characterized by fat tails and extreme yields. Therefore, the operators in 

Bitcoin market tend to take advantage of put options OTM (small strikes and typically a low price) to protect 

themselves from the possible downward price movements in the underlying or, possibly, to assume short positions 

on the cryptocurrency. 

Contrary to the findings in previous literature, which did not establish a link between volatility and strike 

price, the observed trend in Bitcoin's case resembles what is typically observed in equity markets. When share 

prices decline, there is greater uncertainty, resulting in an expected increase in the effective volatility of the 

underlying asset. As share prices rise, the level of certainty increases, leading to more orderly price movements 

and a decrease in volatility. It is important to note that some implied volatility values in the charts exceed 100%, 

indicating market expectations for significant future price movements in Bitcoin. This phenomenon is particularly 

expected for options with distant strike prices since reaching these price levels within a relatively short period would 

require anticipating substantial price swings in the underlying asset. 
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Figure 6. Open interest for call and put contracts per strike price 

 

Additionally, it is worth highlighting that, for certain listed options, it was impossible to calculate implied 

volatility using the Black-Scholes formula due to the iterative procedure's failure to find a volatility value that 

converges with the theoretical market price of the option. This issue is likely attributed to the low level of liquidity in 

the market, which is evident from the limited number of open contracts, especially for options with extreme strike 

values. As such, the obtained values of implied volatility should be interpreted with caution. 

The high bid-ask spreads observed for each of the options traded on July 31, 2019, further corroborate the 

limited liquidity in the market (Figure 9). 

Figure 7. Bid-ask spread by option type  

 

In conclusion, to analyse the evolution of implied volatility over the last year of trading and the changes in 

the market over time, we need to fix the option's time to maturity. This is primarily due to the low liquidity of some 

options with very short or very long maturities and the practical challenge of incorporating an additional dimension 

(beyond implied volatility, strike price, and time of the year) into the graphical representation. Therefore, we focus 

on options with a medium-term maturity, approximately six months, as they exhibit higher liquidity and a more 

distinct and regular skew compared to other maturities, as shown in Figure 7. 
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To create a stable and comprehensive view of the market's situation throughout the year, we average the 

implied volatility values for both bid and ask prices for calls and puts with the same strike price and maturity. This 

approach smooths out the results obtained for individual cases, resulting in a volatility surface that incorporates all 

available data. Additionally, we summarize only the primary strike prices, rounding them to the nearest thousand, 

to avoid anomalous values caused by low open interests.  

The evolution of implied volatility over time is represented by dividing the observations into 38 sub-periods, 

and the volatility values are averaged within each sub-period. This approach accounts for the inability to calculate 

likely volatility values for certain options with extreme moneyness and the presence of substantial missing data on 

specific trading days, as mentioned in Section 2. Figure 10 shows, as could be expected given the low liquidity 

level of the market, a surface with a lot of missing data, corresponding to non-quoted strikes in that given moment.  

At the beginning of 2019 the quotations were clearly concentrated on rather low strikes, avoiding all the values 

above 8.000. During the last months, the prices are instead concentrated on the highest strikes creating a gap in 

correspondence of very low values. Therefore,  a shift in expectations during the year can be observed: the market 

tends to move towards higher strike prices, testifying to a rise in the expected Bitcoin price compared to the previous 

months. 

Figure 8. 3D surface of implied volatility for 6-month options 

 

Conclusions 

The main purpose of this research was to present and compare different approaches for predicting future 

volatility in the Bitcoin market. We explored various methods of volatility calculation and forecasting, focusing on 

the last available quotation date (31/07/2019). Initially, we evaluated the historical daily volatility based on the price 

series to analyse its trend over time. The last value of volatility obtained indicated a relatively high level compared 

to previous ones, highlighting a volatile period in the market. 

Subsequently, we calibrated several GARCH models to predict future volatility, including more traditional 

single-regime models. According to the information criteria we used, the GARCH (1,1) model performed best in this 

category. We also considered multiple-regime models designed to capture the unique distributional characteristics 

of Bitcoin, which tend to vary over time. Surprisingly, these models performed worse in terms of information criteria. 

However, a dual regime model with two sub-models represented by standard GARCHs (1,1) showed potential for 
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outperforming the results obtained by the optimal single-regime model in terms of long-term volatility forecasts. 

This suggests the importance of considering the atypical characteristics in the distribution of cryptocurrency returns. 

It's worth noting that a more complex model specification of the Markov-switching GARCH (MS-GARCH) 

with more regimes and higher lags could potentially yield better results than the standard GARCH. Additionally, we 

examined the coefficients obtained by other calibrated GARCH models to detect the presence of the inverse 

leverage effect in the Bitcoin series, as often identified in previous literature. However, these models did not produce 

consistent results. Nevertheless, the eGARCH model indicated the existence of a leverage effect, unlike the GJR-

GARCH and apARCH models, which had insignificant leverage effect coefficients. As a result, this study cannot 

conclusively prove its hypothesis, and further in-depth analysis may be warranted. This could involve exploring 

different time periods or alternative models capable of detecting the existence of a leverage effect.  

Regarding the implied volatility extracted from Bitcoin options listed on LedgerX and calculated with the 

Black-Scholes formula, it's important to note that the market was still not liquid enough to derive highly significant 

and representative volatility values that reflect the entire market's expectations. However, there appears to be a 

skewed volatility profile favouring options with lower strikes, specifically in-the-money (ITM) calls and out-of-the-

money (OTM) puts, at least for options with a higher level of open interest and less extreme moneyness. 

In summary, when analysing the three different measures of volatility, including historical volatility, 

forecasted volatility, and implied volatility, they all indicate exceptionally high levels of expected fluctuations for the 

following year. This suggests a strong sense of uncertainty, particularly considering the distant maturity phase of 

the asset under consideration. Nevertheless, the continuous increase in the number of option contracts may 

contribute to the reduction of volatility associated with Bitcoin investments in the future. This reduction could occur 

through the use of options as portfolio hedging instruments and due to their information content regarding the 

market's expectations. 

This study confirms that the levels of implied volatility, while not directly comparable, are consistent with the 

high levels obtained using other methods. In some cases, implied volatility even exceeds 100% for sufficiently long-

time horizons. Possible extensions of this research could involve analysing volatility over different time periods, 

utilizing methodologies that assess out-of-sample goodness of fit by comparing predictions to realized values. 

Alternatively, exploring alternative forms of volatility modelling, including a broader spectrum of GARCH models - 

potentially incorporating jumps or structural breaks - or other models to calibrate the implied volatility surface. These 

models, though more complex, are common in financial markets due to their fewer rigid assumptions compared to 

the Black-Scholes model, examples of which include the Heston model or SABR. 

Additionally, simulation techniques, such as Monte Carlo simulations, could be employed to incorporate various 

possible scenarios in the volatility calculation, potentially yielding fewer extreme results by smoothing individual 

simulation values. Moreover, investigating different timeframes for calibrating volatility models or considering 

alternative timing for quotations, such as focusing on short-term trading with intra-day data, could provide valuable 

insights. 

Finally, it's essential to note that the results presented in this study are based on price series provided by 

LedgerX for both the underlying asset and the options. Using data from a different provider or trading platform may 

lead to significantly different results. 
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