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Abstract: 

Nelson and Kang (1984) showed that regression of a unit root time-series on a linear time trend provides significant results 
even if there is no forecast able association amongst the path of the time-series and linear trend. Using Monte Carlo 
simulations, this paper shows that phenomenon also exists in stationary time series and regression of a stationary time series 
on linear trend also produces significant results without the existence of any predictable relationship between the time -series 
and linear trend. The spurious trend is observable in most of the moderate sample sizes and sometimes in sufficiently large 
samples of size over 500 observations. The implications of these findings for unit root test procedures are discussed briefly.  
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Introduction 
A regression between two variables is termed as spurious if the regression shows a very strong relation between 
the variables whereas actually there is no or very weak predictable relationship between them. Yule (1926) 
observed that spurious regression is often found in the relationship between time series data. After many decades, 
two studies provided clues about the reasons behind the spurious regression by Monte Carlo experiment. The first 
study was due to “Granger and Newbold (1974)” who found spurious regression among two independent unit root 
series having no direct or indirect predictable relationship. Second study is due to Nelson and Kang (1984) who 
observed this phenomenon of spurious-trend in unit root series i.e. if a unit root series is regressed on the linear 
deterministic trend, the regression statistics shows the trend to be significant, whereas, in fact, absence of 
predictable relationship between the unit root series and the deterministic trend.  

The contribution of “Granger and Newbold (1974)” focused on the relation amongst both stochastic time-
series while seminal work by Nelson and Kang (1984) focused on relationship between a stochastic series and 
linear deterministic trend. The two studies imply that existence of unit root may cause spurious regression. These 
studies imply that unit root is one of possibly many reasons of spurious regression and by no way these studies 
imply that every spurious relation must be because of the unit root. But unfortunately, it was falsely perceived by 
many of econometricians that spurious regression phenomenon emerges because of unit roots only. Therefore, 
the word spurious regression became a synonym of ‘presence of unit root in underlying time-series without co 
integration’. 

Later on, Granger et al. (1998) observed that spurious regression could also be observed even if the two 
series are stationary. Granger et al. (1998) observed that the regression between two stationary time series could 
yield spurious significance even absence of a predictable relation amongst the underlying time-series.  
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Reconsidering the development in spurious-regression related literature; Granger and Newbold (1974) observed 
spurious regression between two stochastic unit root series and Granger et al. (1998) found that spurious 
regression could also exist between two non-unit root stochastic stationary series. On the other hand, Nelson and 
Kang (1984) found that spurious trend exists in stochastic unit root series. A natural question that comes to mind 
is that whether there is any spurious trend in stationary time series or not. This question has very serious 
implications in econometrics; however, the question has not been explored so far. 

This study attempts to explore the possibility of a spurious trend in stationary series using “Monte Carlo 
experiments”. Extensive simulations had been done to explore the distribution of the conventional t-statistics for 
significance of linear-trend in stationary time-series. Present study finds that spurious regression does exist 
between stationary time series and the linear trend and linear trend appears to be significant even if the series does 
not have any dependence on it. Monte Carlo experiments show that regression of a stationary time series on linear 
trend is heavily biased toward rejection of the hypothesis of ‘no relationship’.  

These findings have very serious implications for a number of statistical procedures and tests including 
procedures of unit root testing. Use of unit root test on a series requires prior specification of a deterministic-trend 
in the underlying time-series and if deterministic-trend could not be reliably specified, results from unit root tests 
would also be unreliable. This paper shows the general to simple type procedures that are usually applied for the 
specification of a deterministic part in a unit root test equation are unreliable due to the spurious trend hence output 
of unit root tests will also be at stake.  

This paper considers three variations of a deterministic trend that are used in unit root test equations and 
shows that conventional statistical procedures are quite misleading in specifying the deterministic regressors in 
both stationary and unit root time series. The implications of these finding for unit root testing procedures are 
discussed in details at the end of paper.  

The reminder of paper is ordered as follows: Section 2, 3, 4 and 5 shows reviews pertinent literature; 
discusses the existence of a predictable relationship between a stationary time series and the linear time trend; 
discusses how the existence of spurious trend could be tested; describes the simulation and Monte Carlo design 
used in the present study; Summarizes the results of Monte Carlo simulations and lastly confers the policy 
implications of the results for unit root tests and testing procedures.  
1. Literature Review 
Though there is a long list of studies on the phenomenon of spurious regression, the research on possibility of 
‘spurious regression in stationary series’ or research on ‘existence of spurious trend’ is scarce with the exception 
of some of the recent work, for examples occurred, Agiakloglou (2013), Philips (2014), Santaularia and Noriega 
(2015), Wang and Han (2015), Vinod (2016) and Kitov, and Kitov, (2008) among others). The ‘spurious trend in 
stationary series’, a combination of two scarce research questions is absent from the available literature. The 
spurious regression in time series was first reported by Yule (1926). Yule noted that a regression between two time-
series often appears to reveal significant relationship whereas in fact the two series are theoretically independent 
of each other. Yule (1926) thought that this phenomenon emerges because of some missing variable. Granger and 
Newbold (1974) witnessed that if two independent time-series with a unit root, without having any indirect relation 
through any third variable, appear to highly correlated and dependent on each other. Therefore, Granger and 
Newbold suggested that it is the unit root that causes spurious regression in the time series models. Philips (1987) 
provided analytical proofs for the results found by Granger and Newbold (1974). 

Though it was not implied by the study of Granger and Newbold (1974), most of the researchers falsely 
assumed that spurious regression is only unit root related phenomenon. Most of the literature presents spurious 
regression as a synonym of unit root with no co integration. A quarter century later, Granger et al. (1998) showed 
that it is not true that spurious regression occurs only because of the unit root. They show that spurious regression 
could also be observed between stationary time series. Rehman and Malik (2014) also show that the spurious 
regression exist between two time series with autoregressive roots.  

Granger and Newbold (1974) and Granger et al. (1998) both observed spurious regression among two 
stochastic time series with first using unit root time series and second using stationary time series. However, Nelson 
and Kang (1984) extended the discussion of spurious regression to another dimension. They observed that 
spurious regression also exists when a unit root series is regressed on deterministic linear trend. This means that 
a stochastic time series shows a spurious trend when there is unit root. A natural question arises as to what will 
happen if a stationary time series serial dependence is regressed on linear deterministic trend? 

Agiakloglou (2013) uses a Monte Carlo analysis to illustrate that estimation of the spurious regression in 
with lagged dependent variable eliminates the spurious problem. However, Choi (2013) found that spurious results 
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can also be found fixed effects models with weak time-series variation. Agiakloglou et al. (2015) analyze the 
spurious regression phenomenon for two independent stationary spatially autoregressive processes of order 1, and 
find that the spurious behavior is not detected nor the presence of spatially auto-correlated errors. Fernandez (2015) 
states that wavelet-correlation-based approach should not be used to test for co integration. However, Leong (2015) 
argues that this statement is dismissive since the existing residual-based tests for co integration are themselves 
tests of correlation. 

Jin et al. (2015) considered the case where the deterministic components of the processes generating 
individual series are independently heavy-tailed with structure changes. The paper found that spurious 
phenomenon is present regardless of the sample size and structural breaks. Santaularia and Noriega (2015) 
introduced a method to distinguish a genuine relationship from a spurious one among integrated processes and 
find that their procedure does not find (spurious) significant relationships. Wang and Han (2015) studied the 
asymptotic properties of least squares estimators and related test statistics in some spurious regression models 
that are generated by stationary or non-stationary fractionally integrated processes. Khan et al. (2019) reported 
non-stationarity even in the presence of structural breaks in time series for Pakistan that might be due to spurious 
trends in deterministic and stochastic components. Perron and Rodriguez (2015) provide generalized least-squares 
(GLS) de trended versions of single-equation static regression or residuals-based tests for testing whether or not 
non-stationary time series are co integrated. Their paper finds that its GLS tests provide substantial power 
improvements over the OLS counterparts. Pesaran et al. (2013) examine the cross section augmented panel unit 
root test to the case of a multifactor error structure. This paper applies Monte Carlo experiments for the properties 
of the small sample size and finds that the test exhibits higher power than the alternative tests for large T and N, 
both in the case of an intercept only, and intercept and a linear trend.  

In the meantime, Bacallado et al. (2015) use Metropolis-Hastings, Langevin, and Hamiltonian Monte Carlo 
to compute posterior distributions for test statistics relevant for testing independence. Wang and Jasra (2016) 
introduce a new adaptive sequential Monte Carlo (SMC) algorithm for approximating permanents of n × n binary 
matrices and establish the convergence of the estimate. Vinod (2016) proposes new confidence intervals (CIs) 
based on the Maximum Entropy bootstrap and shows that it can provide more reliable conservative CIs than 
traditional band block bootstrap intervals and robust linear regression analysis using Monte Carlo Simulations 
(Mishra 2008).  

However, utilizing all available researched resources, we could not find research on stationary time series 
with temporal dependence is regressed on linear deterministic-trend model which addresses the above question. 
Therefore, this study attempts to fill the gap and analyze the distribution of regression output when a stationary 
series is regressed on the linear deterministic trend.  
2. Deterministic Trend in Autoregressive Series 
Consider the following three autoregressive models: 

M1 Autoregressive model without drift, trend 1t t ty yd e-= +   

M2 Autoregressive model with drift, but no trend 1t t ty ya d e-= + +  (1) 

M3 Autoregressive model with drift and trend 1t t ty t ya b d e-= + + +   

where: 2~ (0, )t iide s . 

These are the three models that were used by Dickey and Fuller (1979) in designing the tests for a unit root. 
Each of these models gives a unit root series if d =1 and a stationary series if 1d < . Let us discuss the predictable 
relation between these models and the linear deterministic trend.  

We see that model M3 explicitly contains the linear deterministic trend. If a series generated by this model 
provides significant coefficient when regressed on a linear trend, that significance would be considered genuine. 
However, the relation of M1 and M2 with a linear trend needs to be discussed. Therefore, considering the following 
model:  
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1t t ty ya d e-= + +  ; 
2~ (0, )t iide s         (2) 

This model is equivalent to M2 and could be simplified to M1 by specifying 0a = . The successive 
substitution yields:  

0
0 0

t t
t i i

t t i
i i

y yd a d d e -
= =

= + +Â Â         (3)
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Since 2~ (0, )t iide s  therefore, ( ) 0tE e = ; Also suppose 
0( ) 0E y = , therefore, 

𝐸(𝑦$	) = 	𝐸	[α 𝛿+$
+,- 	]         (5) 

Therefore, for large value of t, 

𝐸(𝑦$	) =
/
012

𝑖𝑓	𝛿		 < 		1
𝛼		𝑡 𝑖𝑓	𝛿	 = 	1

        (6) 

If 0a = , i.e. the data is actually generated from M1 having no deterministic part. In this case, both 
expressions on the RHS of (6) would become zero. This means regardless of the value ofd  the expectation of 
series are independent of linear trend. Therefore, a regression of series generated by M1 on time-trend should be 
insignificant, and if it is significant, the significance must be spurious. “On the other hand, consider the case when 

0a π   (series is generated by M2) and 1d < ; the expectation of the series would be -1α(1-δ) . This shows 
that there is no relation between the series and linear trend. But if 0a π   and 1d =  i.e. the process would 
become random walk with drift, and the expectation of the series would be ta . In this case, the series would have 
a predictable relationship with thee time trend. This analysis shows that if the data generating process is of the form 
of M2 with autoregressive coefficient 0d < , there is no predictable relationship between the trend and the 
observations of the time” series. This “derivation is valid if the time series length is large enough. This is because 

we approximate
0

t

i
i

d
=
Â by 1

1 d-
, whereas, 

0

1
1

tt

i
i

dd
d=

-=
-Â  and td  should be close to zero to make the 

approximation work. Thus, for smaller t, E(yt), may not be independent of time”. 
The discussion could be summarized as following: 
§ If data is generated by M1, it is independent of time irrespective of the value of autoregressive root and 

if the trend appears significant, it must be spurious. 
§ Considering data generated by M2, it is independent of time when the value of autoregressive root is 

less than unity and if the regression appears to be significant, it must be spurious.  
2.1. Testing Spurious Trend and Monte Carlo Design 
In this study, two types of equations are used for testing the existence of spurious trend. First equation is the one 
used by Nelson and Kang (1984) for testing the spurious trend which is as follows:  

t ty a b t e= + +           (7) 

where: ty  is a series generated by M1 or M2, described in equation (1).  
This equation is referred as NK Equation hereafter. The t-statistics for testing significance of linear-trend is 

referred as tb. 
Second equation we consider is the equations used by Dickey and Fuller (1979) which is as follows: 

 
1t t ty t ya b d e-= + + +          (8) 
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Again ty  is a series generated by M1 or M2, described in equation (1). This equation be referred as DF 

Equation hereafter. The t-statistics for testing significance of linear-trend is referred as tβ . The coefficients of linear 
terms in the two equations would be indicative of existence of spurious trend, if any. 

Extensive Monte-Carlo experiments were carried out to see existence of spurious trend which consists of 
following steps: 

§ Choose a DGP i.e. one of the models described in equation (1); 
§ Generate a series ty according to the chosen model; 

§ Estimate DF Equation and NK Equation and record bt and tβ ; 
§ Repeat (b) – (c) large number of times; 
§ Analyze the distribution of  bt and tβ using different descriptive tools. 

3. Results 
a. Distribution of tb for M1 

Figure 1 summarizes the distribution of t-statistics for coefficient of linear-trend in NK Equation when the data is 
autoregressive without a constant in the auto-regression i.e. generated by model M1. As discussed in section 3, 
the data generated by M1 has no predictable relationship with linear trend for stationary roots as well as for unit 
root. However, the distribution of t-statistics gives much different pictures. The Left panel in Figure 1 corresponds 
to sample size 30 whereas the right panel corresponds to sample size 500. For sample size 30, the dashed curve 
represents the distribution of tb when 0d = . We see that the distribution of tb in this case is similar to that of normal 
distribution.  

However, distribution of tb become flatter when 0d π  even for the stationary values of d . The 
conventional statistical analysis assumes a coefficient to be significant if absolute value of corresponding t-statistics 
is higher than 2 and probability of getting significant coefficient is close 5% when the distribution is approximately 
normal. The flatter distributions of t-statistics indicate that the chances of getting significant results exceed from the 
nominal 5% size whenever the auto-regression is non-zero, even if the root is stationary. This implies that the 
spurious trend is observable even if there is no unit root. 

Figure 1. The distribution of bt for various values of d  and various sample sizes, DGP: M1 

  
Sample Size = 30 Sample size = 500 

For data generating process M1, if 1d = than the process becomes unit root and the distribution of should 
be similar to that observed by Nelson and Kang (1984). Thus the distributions represented by solid lines in the two 
panels in Figure 1 represent the distributions observed by Nelson and Kang. The distributions that correspond to 

0d =  are for IID series.  
However, assuming asymptotic distribution of t-statistics for stationary series is normal with chances of 

spurious regression shall reduce to zero when sample size is large. The right panel in Figure 1 summarizes the 
distribution of for sample size 500. This is sufficiently large sample for the practitioner and practitioners rarely find 
such a large sample in the macroeconomic time series. For this sample, it is evident from the Figure 1 that the 
distribution of tb at 0.7d = , is not very different from the distribution from the distribution observed for sample 



Journal of Applied Economic Sciences 

641 

size 30. The Table 1 which summarizes the distribution probability of getting significant tb shows that the probability 
of getting significant coefficient is 40 even at sample size 500 which implies that chances of spurious regression 
are 35% which are still very high from the nominal significance level.  

We noted percentage rejection of null of no-relationship with linear-trend for various samples sizes ranging 
30 to 500 which are summarized in Figure 2. We see that probability of significant tb for d = 0.7 remains closer to 
40% for all sample sizes. If the value of autoregressive coefficient increases, the probability of false rejection of 
hypothesis b = 0 also increases.  

Figure 2. Percentage rejection of b= 0 in NK-Equation: GDP: M1 

 
Figure 2 also shows that even though for stationary time series, the probability of spurious significance of 

linear-trend decreases with increase in sample size, with such small decrease, for any reasonable sample size, 
there will be very high probability of spurious trend. The Figure also show that the actual size of the t-test for 
significance of linear trend is closer to nominal size only when series is IID and whenever the series has serial 
dependence, there are chances of finding spurious results. 
b. Distribution of tb for M1 

Figure 3 summarizes the distribution of the “t-statistics” for linear trend in DF-Equation i.e. tb for the data 
generated by M1 for sample size 30 and 250. The Figure 3 again illustrates that the distribution of t-statistics looks 
closer to “standard-normal” only when value of auto-regressive coefficient is d  zero.  

In DF Equation and DGP M1, the distribution of tb converges to standard normal distribution at a faster 
speed. The right panel in Figure 3 summarizes the distribution of for sample size 250. One can see that the 
distributions of tb become indistinguishable for all stationary roots. Though for the unit root, the distribution is still 
far from normal distribution and is bimodal, for the stationary roots, the distribution of tb has approximate normal 
distribution. This means that the chances of spurious regression shall reduce to zero. However, in smaller sample 
sizes, there are heavy chances of spurious regression.  

Figure 3. The distribution of tb in DF-Equation, DGP is M1 

  
Sample size = 30 Sample size = 250 

In DF Equation and DGP M1, the distribution of tb converges to standard normal distribution at a faster 
speed. The right panel in Figure 3 summarizes the distribution of for sample size 250. One can see that the 
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distributions of tb become indistinguishable for all stationary roots. Though for the unit root, the distribution is still 
far from normal distribution and is bimodal, for the stationary roots, the distribution of tb has approximate normal 
distribution. This means that the chances of spurious regression shall reduce to zero. However, in smaller sample 
sizes, there are heavy chances of spurious regression. “ 

Figure 4 provides the rejection probability of the null hypothesis of no relation among the trend and the time 
path of series”. This figure tells that the probability of getting significant coefficient of trend is close to 40% when 
the value of auto-regressive coefficient close to 1 for all three sample sizes summarized in Figure 4. This implies 
that the chances of spurious regression are close to 35% given the stationary roots close to 1. 

Figure 4. Percentage rejection of null b = 0 in DF-Equation, DGP is M1 

 
c. Distribution of tb for M2 

Figure 5 plots distribution of t-statistics in NK-Equation when M2 used as DGP. Left panel gives distribution 
of bt for sample size 30 and the right panel shows the distribution for the time series length 500. As we have shown 
in section 3, the series generated through M2 is independent of time whenever 1d < , therefore the probability of 
getting significant coefficient of linear trend should be close to 5%. However it was observed “that if drift parameter 
a  is positive, the distribution of t-statistics is skewed towards right. The skewness increases with increase in value 
of auto-regressive parameter” but decreases as the length of time series increases.  

Figure 5. The distribution of bt  in NK-Equation, DGP: M2 

  

Sample size = 30 Sample size = 500 

However, getting spurious significance in this case is very high for all reasonable sample sizes. As shown 
in Figure 6, the probability of getting significant linear trend converges to 100% as value of autoregressive 
parameter becomes close to zero. Further, it was observed that the sample size does not make significant 
difference in the probability of getting spurious regression. We see that for large sample the probability of getting 
significant linear trend is smaller; however the difference is not a considerable. Changing the sample size from 30 
to 500, there is only 3% reduction in the probability of spurious significance of the linear trend when auto-regressive 
coefficient is 0.9.  
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Figure 6. Percentage rejection of b = 0 in NK Equation, GDP: M2 

 
d. Distribution of tb for M2 

Figure 7 gives the distribution of t-statistics in DF-Equation when data generating process is M2. Like NK 
Equation, the DF Equation also gives skewed distribution when the series are generated by M2. The distribution 
looks closer to standard normal only when there is no auto-regression in the underlying series i.e. 0d =  and the 
distribution becomes biased toward right as the value of d exceeds 0. By this variation in distribution of t-statistics, 
the probability of getting significant trend term also changes and exceeds the nominal significance level by a huge 
percentage.  

Figure 7. The distribution of tb in DF equation, DGP: M2 

 
Figure 8 summarizes the probability of getting significant coefficient of linear trend when DF Equation is 

used in combination with M2. This figure shows that the sample size creates a significant difference in the probability 
of getting spurious trend, however, even in moderate sample sizes, the probability of getting spurious regression 
remains sufficiently high. The actual size of the test for significance of linear trend exceeds the nominal size. 

Figure 8. Percentage rejection of null b = 0 in DF equation”, DGP is M2 

 
Therefore, “distribution is positively skewed, if positive drift coefficient is present in the DGP. Figure 8 

illustrates probability of rejection of null hypothesis for different sample sizes. The Figure also illustrates that the 
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probability of rejection of b = 0 matches with the nominal size, if [0, 0.8]dŒ . This suggests that in DF- Equation, 
conventional Student’s t-statistis can be used to specify the deterministic regressor provided the auto-regression is 
weak and the autoregressive root d  is closer to zero. On contrary, if the auto-regressive root is closer to 1 (but < 
1 i.e. stationary series), the probability of false rejection of null b = 0 increases” significantly. 
e. Comparison of NK-equation with DF-equation for M1 and M2 

The Figure 9 presents a comparison of the rejection rates of coefficient of linear trend for model M1 and M2. 
We observe following from the Figure. 

§ Rejection rates for M2 are always higher that the rejection rates for M1. This remains valid for DF 
equation and for NK equation; 

§ The rejection rates for NK Equation are always higher than the rejection rates in DF equation. This is 
valid for both M1 and M2; 

§ Increasing the sample size reduces the chances of spurious trend. However, the reduction is not as fast 
and even for a sample of 400, all of the possible combinations of DGP and test equations give very high 
probability of false rejection of null hypothesis of no linear- trend.  
Figure 9. A comparison of Rejection Rate by Nelson and Kang and DF equations 

  
Sample size = 100 Sample size = 400 

Similarly, it is also observed that by increasing the sample size, the probability of spurious trend reduces 
significantly when DF Equations are used and there is very small reduction when NK equations are used. 

In short we have seen huge probabilities of spurious trend for the model with drift (M2) and for model without 
trend (M1) and by using DF Equation as well as NK equation. The procedures which are used for specification of 
deterministic part in a series before application of unit root depends on DF type Equations. We have seen that DF 
equation is also heavily biased toward rejection when the value of autoregressive is non-zero. Thus the asymptotic 
theory that is assumed valid for stationary series is actually valid only for IID series with no auto-regressions. As 
we discussed, the distribution of t-statistics is biased when the series in not IID, this means that procedures for 
specification of deterministic trend in unit root test equation are not valid and hence the output of unit root test is at 
stake.  
Conclusion and Policy Implications 
Modern days’ time series analysis starts with the unit root testing. One very important decision is use of unit root 
test is specification of deterministic-part. Many of the unit root tests are designed taking a specific form of 
deterministic trend e.g. Westerlund (2014), Kruse (2009), Jentsch et al. (2011), Otero and Smith (2012), Darné and 
Diebold (2002), Diebold and Giraud (2005) etc. 

However, assuming this kind of model is not valid for real data. The second option in this case is specifying 
the deterministic part on the basis of the data to be tested. The details discussed in this paper show that the 
procedures based on normal approximations do not work for specification of deterministic trend whether the data 
is stationary or whether it is unit root. Therefore, there is still dire need of extensive research on the methodology 
of specifying the deterministic part in any model before conducting unit root tests. 
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