Analysing Economic Convergence Across the America: A Survival Analysis Approach to Gross Domestic Product Per Capita Trajectories
Machine learning algorithms, and economic interpretation, integrated with survival analysis, are used to examine the temporal dynamics associated with achieving a 5% increase in purchasing power parity-adjusted GDP per capita over a period of 120 months (2013-2022). The comparative investigation reveals that DeepSurv effectively captures non-linear interactions, though standard models exhibit comparable performance under certain conditions. The weight matrix evaluates the economic implications of vulnerabilities, risks, and capacities. To meet the GDP per capita objective, the findings emphasise the necessity of a balanced approach to risk-taking, strategic vulnerability reduction, and investment in governmental capacities and social cohesiveness. The policy guidelines advocate for individualised approaches that account for the complex dynamics at play in decision-making processes.
© 2024 The Author(s). This article is distributed under the terms of the license CC-BY 4.0., which permits any further distribution in any medium, provided the original work is properly cited.
Vallarino, D. (2024). Analysing economic convergence across the America: A survival analysis approach to Gross Domestic Product per capita trajectories. Journal of Applied Economic Sciences, Volume XIX, Summer, 2(84), 131–145. https://doi.org/10.57017/jaes.v19.2(84).03
[1] Assa, J., & Meddeb, R. (2021). Towards a multidimensional vulnerability index. United Nations Development Programme. Retrieved April, 14, 2023. https://www.undp.org/sites/g/files/zskgke326/files/publications/ UNDP-Towards-a-Multidimensional-Vulnerability-Index.pdf
[2] Azodi, C. B., Tang, J., & Shiu, S. H. (2020). Opening the black box: Interpretable machine learning for geneticists. Trends in Genetics, Volume 36, 6, 442–455. https://doi.org/10.1016/j.tig.2020.03.005
[3] Balica, S. F., Dinh, Q., & Popescu, I. (2023). Vulnerability and exposure in developed and developing countries: Large-scale assessments. In: J. F. Shroder, P. Paron, & G. Di Baldassarre (Eds.), Hydro-Meteorological Hazards, Risks, and Disasters, 2nd Edition, Volume 5, 103–143. https://doi.org/https://doi.org/10.1016/B978-0-12-819101-9.00013-3
[4] Barnwal, A., Cho, H., & Hocking, T. (2022). Survival Regression with Accelerated Failure Time Model in XGBoost. Journal of Computational and Graphical Statistics, 31(4), 1292–1302. https://doi.org/10.1080/10618600.2022.2067548
[5] Barrett, J. K., Siannis, F., & Farewell, V. T. (2011). A semi-competing risks model for data with interval-censoring and informative observation: An application to the MRC cognitive function and ageing study. Statistics in Medicine, 30(1), 1–10. https://doi.org/10.1002/sim.4071
[6] Basak, P., Linero, A., Sinha, D., & Lipsitz, S. (2022a). Semiparametric analysis of clustered interval-censored survival data using soft Bayesian additive regression trees (SBART). Biometrics, 78(3), 880–893. https://doi.org/10.1111/biom.13478
[7] Basak, P., Linero, A., Sinha, D., & Lipsitz, S. (2022b). Semiparametric analysis of clustered interval-censored survival data using soft Bayesian additive regression trees (SBART). Biometrics, 78(3), 880–893. https://doi.org/10.1111/biom.13478
[8] Cui, P., Shen, Z., Li, S., Yao, L., Li, Y., Chu, Z., & Gao, J. (2020). Causal Inference Meets Machine Learning. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 3527–3528. https://doi.org/10.1145/3394486.3406460
[9] Cuperlovic-Culf, M. (2018). Machine Learning Methods for Analysis of Metabolic Data and Metabolic Pathway Modeling. Metabolites, 8(1). https://doi.org/10.3390/metabo8010004
[10] Dutta, I., & Mishra, A. (2023). Economics Measuring Vulnerability to Poverty: A Unified Framework Measuring Vulnerability to Poverty: A Unified Framework. https://hummedia.manchester.ac.uk/schools/soss/ economics/discussionpapers/EDP-2301.pdf
[11] Finch, H. (2005). Comparison of Distance Measures in Cluster Analysis with Dichotomous Data. Journal of Data Science, 3(1), 85-100. https://doi.org/10.6339/JDS.2005.03(1).192
[12] Gorfine, M., & Zucker, D. M. (2022). Shared Frailty Methods for Complex Survival Data: A Review of Recent Advances. http://arxiv.org/abs/2205.05322
[13] Hair, J. F., & Fávero, L. P. (2019). Multilevel modelling for longitudinal data: concepts and applications. RAUSP Management Journal, 54(4), 459–489. https://doi.org/10.1108/RAUSP-04-2019-0059
[14] Haradal, S., Hayashi, H., & Uchida, S. (2018). Biosignal Data Augmentation Based on Generative Adversarial Networks. 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 368–371. https://doi.org/10.1109/EMBC.2018.8512396
[15] Jiang, R. (2022). A novel parameter estimation method for the Weibull distribution on heavily censored data. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 236(2), 307–316. https://doi.org/10.1177/1748006X19887648
[16] Jin, P., Haider, H., Greiner, R., Wei, S., & Häubl, G. (2021). Using survival prediction techniques to learn consumer-specific reservation price distributions. PLoS One, 16. https://doi.org/10.1371/journal.pone.0249182
[17] Jin, Z., Shang, J., Zhu, Q., Ling, C., Xie, W., Qiang, B. (2020). RFRSF: Employee Turnover Prediction Based on Random Forests and Survival Analysis. In: Huang, Z., Beek, W., Wang, H., Zhou, R., Zhang, Y. (eds) Web Information Systems Engineering – WISE 2020. WISE 2020. Lecture Notes in Computer Science, Volume 12343. Springer, Cham. https://doi.org/10.1007/978-3-030-62008-0_35
[18] Khan, F. M., & Zubek, V. B. (2008). Support Vector Regression for Censored Data (SVRc): A Novel Tool for Survival Analysis. 8th IEEE International Conference on Data Mining, 863–868. https://doi.org/10.1109/ICDM.2008.50
[19] Le-Van, C., & Tran-Nam, B. (2023). Comparing the Harrod-Domar, Solow and Ramsey growth models and their implications for economic policies. Fulbright Review of Economics and Policy. https://doi.org/10.1108/frep-06-2023-0022
[20] Maharana, K., Mondal, S., & Nemade, B. (2022). A review: Data pre-processing and data augmentation techniques. Global Transitions Proceedings, 3(1), 91–99. https://doi.org/10.1016/j.gltp.2022.04.020
[21] Mumuni, A., & Mumuni, F. (2022). Data augmentation: A comprehensive survey of modern approaches. Array, 16, 100258. https://doi.org/10.1016/j.array.2022.100258
[22] Nolan, B., Roser, M., & Thewissen, S. (2019). GDP Per Capita Versus Median Household Income: What Gives Rise to the Divergence Over Time and how does this Vary Across OECD Countries? Review of Income and Wealth, 65(3), 465–494. https://doi.org/10.1111/roiw.12362
[23] Organization of American States (2023). Strategic Counsel for Organizational Development and Management for Results. Internal Report
[24] Raghunathan, T. E. (2004). What Do We Do with Missing Data? Some Options for Analysis of Incomplete Data. Annual Review of Public Health, 25(1), 99–117. https://doi.org/10.1146/annurev.publhealth.25. 102802.124410
[25] Thenmozhi, M., Jeyaseelan, V., Jeyaseelan, L., Isaac, R., & Vedantam, R. (2019). Survival analysis in longitudinal studies for recurrent events: Applications and challenges. Clinical Epidemiology and Global Health, 7(2), 253–260. https://doi.org/10.1016/j.cegh.2019.01.013
[26] Vallarino, D. (2024). Unveiling the Temporal Layers of Economic Transformations: A Survival Analysis on Unemployment Trends in the Americas. http://dx.doi.org/10.2139/ssrn.4731406
[27] Vallarino, D. (2024). Temporal Dynamics of Countries' Journey to Cluster-Specific GDP per Capita: A Comprehensive Survival Study. Review of Economic Assessment, 3(1), 23. https://doi.org/10.58567/rea03010001
[28] Vallarino, D. (2024). A Comparative Machine Learning Survival Models Analysis for Predicting Time to Bank Failure in the US (2001-2023). Journal of Economic Analysis, 3(1), 129-144. https://doi.org/10.58567/jea03010007
[29] Vallarino, D. (2023). Machine Learning Survival Models restrictions: the case of start-ups time to failed with collinearity-related issues. Journal of Economic Statistics, 1(3), 1-15. https://doi.org/10.58567/jes01030001
[30] Vallarino, D. (2023). Buy when? Survival machine learning model comparison for purchase timing. https://doi.org/10.48550/arXiv.2308.14343
[31] Vinzamuri, B., Li, Y., & Reddy, C.K. (2017). Pre-Processing Censored Survival Data Using Inverse Covariance Matrix Based Calibration, in IEEE Transactions on Knowledge and Data Engineering, 29(10), 2111-2124. https://doi.org/10.1109/TKDE.2017.2719028
[32] Wang, L., Li, Y., Zhou, J., Zhu, D., & Ye, J. (2017). Multi-task Survival Analysis. IEEE International Conference on Data Mining (ICDM), 485–494. https://doi.org/10.1109/ICDM.2017.58
[33] Wang, P., Li, Y., & Reddy, C. K. (2017). Machine Learning for Survival Analysis: A Survey. http://arxiv.org/abs/1708.04649
[34] Yuan, H., Xie, F., Ong, M. E. H., Ning, Y., Chee, M. L., Saffari, S. E., Abdullah, H. R., Goldstein, B. A., Chakraborty, B., & Liu, N. (2022). AutoScore-Imbalance: An interpretable machine learning tool for development of clinical scores with rare events data. Journal of Biomedical Informatics, 129, 104072. https://doi.org/10.1016/j.jbi.2022.104072
[35] Yunita, R., Gunarto, T., Marselina, M., & Yuliawan, D. (2023). The Influence of GDP per Capita, Income Inequality, and Population on CO2 Emission. Environmental Kuznet Curve Analysis in Indonesia. International Journal of Social Science, Education, Communication and Economics, 2(2), 217–230. https://doi.org/10.54443/sj.v2i2.130
[36] Zelenkov, Y. (2020). Bankruptcy prediction using survival analysis technique. Proceedings of 22nd IEEE Conference on Business Informatics, CBI 2020, 2, 141–149. https://doi.org/10.1109/CBI49978.2020.10071
[37] Zhao, Z. L., Yu, H. J., & Cheng, F. (2022). An Analysis of Factors Affecting Agricultural Tractors’ Reliability Using Random Survival Forests Based on Warranty Data. IEEE Access, 10, 50183–50194. https://doi.org/10.1109/ACCESS.2022.3172348
[38] Zhou, F., Fu, L., Li, Z., & Xu, J. (2022). The recurrence of financial distress: A survival analysis. International Journal of Forecasting, 38(3), 1100–1115. https://doi.org/10.1016/j.ijforecast.2021.12.005