image

Application of Social Media Sentiment Analysis for Developing Trading Models in the Cryptocurrency Market

Download Paper: Download pdf
Author(s):
Abstract:

This study examines the predictive role of social media sentiment in forecasting short-term Bitcoin price changes using econometric and machine learning models. Based on Twitter and Reddit data (2020–2025), we construct a daily sentiment index and analyse its lagged effect on returns. OLS regression and advanced models (random forest, XGBoost) show that a one-unit increase in lagged sentiment predicts a statistically significant 0.24–0.25% rise in next-day returns. Controls include momentum, volatility, and trading volume, with Granger causality tests and VAR confirming sentiment’s leading role. While volume is insignificant, sentiment and momentum are strong predictors. Machine learning models outperform linear baselines, highlighting nonlinear interactions in sentiment-driven markets. Results validate sentiment as a meaningful input for forecasting, with applications to trading bots, real-time risk dashboards, and supervisory tools. The study contributes to applied economics by showing how quantified investor emotion can serve as a leading indicator in volatile cryptocurrency markets. Future research should consider multilingual sentiment, intraday horizons, and cross-asset extensions.


Copyright© 2025 The Author(s). This article is distributed under the terms of the license CC-BY 4.0., which permits any further distribution in any medium, provided the original work is properly cited.


Article’s history: Received 5th of August, 2025; Revised 9th of September, 2025; Accepted 16th of September, 2025; Available online: 30th of September, 2025. Published as article in the Volume XX, Fall, Issue 3(89), 2025.


How to cite:

Trushkovskyi, A. (2025). Application of Social Media Sentiment Analysis for Developing Trading Models in the Cryptocurrency Market. Journal of Applied Economic Sciences, Volume XX, Fall, 3(89), 535 – 559. https://doi.org/10.57017/jaes.v20.3(89).11


Acknowledgments/Funding: The author declares that no funding was received for conducting this research.


Conflict of Interest Statement: The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.


Data Availability Statement: The data that support the findings of this study are available from the corresponding author upon reasonable request.


References:

Abdullah, T., & Ahmet, A. (2022). Deep learning in sentiment analysis: Recent architectures. ACM Computing Surveys, 55(8), 1–37. https://doi.org/10.1145/3548772


Agrawal, S., Kumar, N., Rathee, G., Kerrache, C. A., Calafate, C. T., & Bilal, M. (2024). Improving stock market prediction accuracy using sentiment and technical analysis. Electronic Commerce Research. https://doi.org/10.1007/s10660-024-09874-x


Alternative.me. (2024). Crypto fear & greed index. https://alternative.me/crypto/fear-and-greed-index


Andreev, B., Sermpinis, G., & Stasinakis, C. (2022). Modeling financial markets during extreme volatility: Evidence from the GameStop short squeeze. Forecasting, 4(3), 654–673. https://doi.org/10.3390/forecast4030035


Aren, S., & Nayman Hamamci, H. (2023). Evaluation of investment preference with phantasy, emotional intelligence, confidence, trust, financial literacy and risk preference. Kybernetes, 52(12), 6203–6231. https://doi.org/10.1108/K-01-2022-0014


Augmento. (n.d.). Bitcoin sentiment – Bull & bear index. https://www.augmento.ai/bitcoin-sentiment


Ballis, A., & Verousis, T. (2022). Behavioural finance and cryptocurrencies. Review of Behavioural Finance, 14(4), 545–562. https://doi.org/10.1108/RBF-11-2021-0256


Bashiri, H., & Naderi, H. (2024). Comprehensive review and comparative analysis of transformer models in sentiment analysis. Knowledge and Information Systems, 66(12), 7305–7361. https://doi.org/10.1007/s10115-024-02214-3


Bloomberg. (2024). Strong performance despite macro headwinds. PAT, 16(18.3), 21–23. https://images.assettype.com/bloom bergquint/2024-02/4952a7b0-2fb3-4d68-a0ae-f59a5e871665/Motilal_Oswal__PI_Industries_Q3FY24_Results_Revi ew.pdf 


Bollen, J., Mao, H., & Zeng, X. (2011). Twitter mood predicts the stock market. Journal of Computational Science, 2(1), 1–8. https://doi.org/10.1016/j.jocs.2010.12.007


Bouri, E., Jalkh, N., & Roubaud, D. (2019). Commodity volatility shocks and BRIC sovereign risk: A GARCH-quantile approach. Resources Policy, 61, 385–392. https://doi.org/10.1016/j.resourpol.2018.03.013


Ciaian, P., Rajcaniova, M., & Kancs, D. A. (2016). The economics of Bitcoin price formation. Applied Economics, 48(19), 1799–1815. https://doi.org/10.1080/00036846.2015.1109038


CoinCodex. (2024). Crypto market sentiment score. https://coincodex.com/sentiment


Compass Financial Technologies. (n.d.). Compass SESAMm Crypto Sentiment Index. https://www.compassft.com/indice/cscsi20


Das, R., & Singh, T. D. (2023). Multimodal sentiment analysis: A survey of methods, trends, and challenges. ACM Computing Surveys, 55(13s), 1–38. https://doi.org/10.1145/3586075


de Best, R. (2025, May 6). Price comparison and price change of the top 100 cryptos as of May 6, 2025. Statista. https://www.statista.com/statistics/1269013/biggest-crypto-per-category-worldwide/ 


Delfabbro, P., King, D., Williams, J., & Georgiou, N. (2021). Cryptocurrency trading, gambling and problem gambling. Addictive Behaviors, 122, Article 107021. https://doi.org/10.1016/j.addbeh.2021.107021


Govindan, V., & Balakrishnan, V. (2022). A machine learning approach in analysing the effect of hyperboles using negative sentiment tweets for sarcasm detection. Journal of King Saud University - Computer and Information Sciences, 34(8), 5110–5120. https://doi.org/10.1016/j.jksuci.2022.01.008 


Han, B., Hirshleifer, D., & Walden, J. (2022). Social transmission bias and investor behaviour. Journal of Financial and Quantitative Analysis, 57(1), 390–412. https://doi.org/10.1017/S0022109021000077


Hassan, M. K., Hudaefi, F. A., & Caraka, R. E. (2022). Mining netizen’s opinion on cryptocurrency: Sentiment analysis of Twitter data. Studies in Economics and Finance, 39(3), 365–385. https://doi.org/10.1108/SEF-06-2021-0237


Hemmatian, F., & Sohrabi, M. K. (2019). A survey on classification techniques for opinion mining and sentiment analysis. Artificial Intelligence Review, 52(3), 1495–1545. https://doi.org/10.1007/s10462-017-9599-6


Johnson, B., Stjepanović, D., Leung, J., Sun, T., & Chan, G. C. (2023). Cryptocurrency trading, mental health and addiction: A qualitative analysis of Reddit discussions. Addiction Research & Theory, 31(5), 345–351. https://doi.org/10.1080/16066359.2023.2174259


Katsiampa, P. (2017). Volatility estimation for Bitcoin: A comparison of GARCH models. Economics Letters, 158, 3–6. https://doi.org/10.1016/j.econlet.2017.06.023


Khan, W., Ghazanfar, M. A., Azam, M. A., Karami, A., Alyoubi, K. H., & Alfakeeh, A. S. (2022). Stock market prediction using machine learning classifiers and social media, news. Journal of Ambient Intelligence and Humanized Computing, 13, 3433–3456. https://doi.org/10.1007/s12652-020-01839-w


Knoppe, C., Okuneva, M., & Zitti, M. (2025). Salmon stock returns around market news. Marine Resource Economics, 40(2), 107–140. https://doi.org/10.1086/734307


Kokab, S. T., Asghar, S., & Naz, S. (2022). Transformer-based deep learning models for the sentiment analysis of social media data. Array, 14, Article 100157. https://doi.org/10.1016/j.array.2022.100157


Korobtsova, D., Fursa, V., & Dobrovinskyi, A. (2023). Cryptocurrencies as a new form of money: Prospects for use and impact on the financial system in the future. Futurity Economics & Law, 3(3), 49–66. https://doi.org/10.57125/FEL.2023.09.25.03


Kotelnikova, A., Paschenko, D., Bochenina, K., & Kotelnikov, E. (2021). Lexicon-based methods vs. BERT for text sentiment analysis. In I. Lytvynenko & S. Lupenko (Eds.), International Conference on Analysis of Images, Social Networks and Texts (pp. 71–83). Springer International Publishing. https://doi.org/10.1007/978-3-031-16500-9_7


Kristoufek, L. (2013). Bitcoin meets Google Trends and Wikipedia: Quantifying the relationship between phenomena of the Internet era. Scientific Reports, 3(1), Article 3415. https://doi.org/10.1038/srep03415


Marchuk, H., Plekhanova, T., & Marukhovskа-Kartunova, O. (2023). Using social media to engage the public in sustainable development initiatives. Law, Business and Sustainability Herald, 3(2), 4–14. https://lbsherald.org/index.php/journal/article/view/51


Marthinsen, J. E., & Gordon, S. R. (2022). The price and cost of Bitcoin. The Quarterly Review of Economics and Finance, 85, 280–288. https://doi.org/10.1016/j.qref.2022.04.003


Muñoz, S., & Iglesias, C. A. (2022). A text classification approach to detect psychological stress, combining a lexicon-based feature framework with distributional representations. Information Processing & Management, 59(5), Article 103011. https://doi.org/10.1016/j.ipm.2022.103011


Nariman, D. (2024). Sentiment analysis of hotel reviews using lexicon-based methods: A comparative study of VADER and TextBlob. In International Conference on Broadband and Wireless Computing, Communication and Applications (pp. 263–274). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-76452-3_25


Orazbayev, B., Ospanov, E., Kissikova, N., Mukataev, N., & Orazbayeva, K. (2017). Decision-making in the fuzzy environment on the basis of various compromise schemes. Procedia Computer Science, 120, 945–952. https://doi.org/10.1016/j.procs.2017.11.330


Parekh, R., Patel, N. P., Thakkar, N., Gupta, R., Tanwar, S., Sharma, G., & Sharma, R. (2022). DL-GuesS: Deep learning and sentiment analysis-based cryptocurrency price prediction. IEEE Access, 10, 35398–35409. https://doi.org/10.1109/ACCESS.2022.3163817


Potwora, M., Vdovichena, O., Semchuk, D., Lipych, L., & Saienko, V. (2024). The use of artificial intelligence in marketing strategies: Automation, personalization and forecasting. Journal of Management World, 2, 41–49. https://doi.org/10.53935/jomw.v2024i2.275


Potwora, M., Zakryzhevska, I., Mostova, A., Kyrkovskyi, V., & Saienko, V. (2023). Marketing strategies in e-commerce: Personalised content, recommendations, and increased customer trust. Financial and Credit Activity: Problems of Theory and Practice, 5(52), 562–573. https://doi.org/10.55643/fcaptp.5.52.2023.4190


Puertas, A. M., Clara-Rahola, J., Sánchez-Granero, M. A., de Las Nieves, F. J., & Trinidad-Segovia, J. E. (2023). A new look at financial markets efficiency from linear response theory. Finance Research Letters, 51, Article 103455. https://doi.org/10.1016/j.frl.2022.103455


Riabchykov, M., & Mytsa, V. (2024). Improvement of intelligent systems for creating personalized products. In I. Lytvynenko & S. Lupenko (Eds.), Proceedings of the 4th International Workshop on Information Technologies: Theoretical and Applied Problems (ITTAP 2024) (Volume 3896, pp. 235–247). CEUR-WS. https://ceur-ws.org/Vol-3896/ITTAP


Riabchykov, M., Mytsa, V., Tkachuk, O., Pakholiuk, O., & Melnyk, D. (2023). Efficiency of protective textile smart systems using electronic Tags. In Conference on Integrated Computer Technologies in Mechanical Engineering–Synergetic Engineering (pp. 189-197). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-61415-6_16 


Riabova, T., Riabov, I., Vovchanska, O., Li, T., & Saienko, V. (2022). Peculiarities of digital marketing in the era of globalization: An analysis of the challenges. Financial and Credit Activity: Problems of Theory and Practice, 6(47), 160–171. https://doi.org/10.55643/fcaptp.6.47.2022.3940 


Rogmann, J., & Schreiber, S. (2024). Carbon credit sentiments and green energy stocks. Applied Economics. https://doi.org/10.1080/00036846.2024.2393891


Said, F. F., Somasuntharam, R. S., Yaakub, M. R., & Sarmidi, T. (2023). Impact of Google searches and social media on digital assets’ volatility. Humanities and Social Sciences Communications, 10(1), 1–17. https://doi.org/10.1057/s41599-023-02400-8


Selvakumar, P., Mishra, R. K., Budhiraja, A., Dahake, P. S., Chandel, P. S., & Vats, C. (2025). Social media influence on market sentiment. In Unveiling investor biases that shape market dynamics (pp. 225–250). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-3994-7.ch009


Shah, S. S., & Shah, S. A. H. (2024). Trust as a determinant of social welfare in the digital economy. Social Network Analysis and Mining, 14(1), Article 79. https://doi.org/10.1007/s13278-024-01238-5


Shah, S. S., Serna, R. J., & Delgado, O. S. (2023). Modelling the influence of social learning on responsible consumption through directed graphs. Electronic Research Archive, 31(9), 5161–5206. https://doi.org/10.3934/era.2023263


Smailov, N., Uralova, F., Kadyrova, R., Magazov, R., & Sabibolda, A. (2025). Optimization of machine learning methods for de-anonymization in social networks. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, 15(1), 101–104. https://doi.org/10.35784/iapgos.7098


The Tie. (n.d.). Sentiment API documentation. https://www.thetie.io/solutions/sentiment-api


Token Metrics. (n.d.). Sentiment guide. https://developers.tokenmetrics.com/docs/sentiment-guide


Valle-Cruz, D., Fernandez-Cortez, V., López-Chau, A., & Sandoval-Almazán, R. (2022). Does Twitter affect stock market decisions? Financial sentiment analysis during pandemics: A comparative study of the H1N1 and the COVID-19 periods. Cognitive Computation, 14(1), 372–387. https://doi.org/10.1007/s12559-021-09819-8


Vlahavas, G., & Vakali, A. (2024). Dynamics between Bitcoin market trends and social media activity. FinTech, 3(3), 349–378. https://doi.org/10.3390/fintech3030020


Wang, J., Xie, Z., Li, Q., Tan, J., Xing, R., Chen, Y., & Wu, F. (2019). Effect of digitalized rumour clarification on stock markets. Emerging Markets Finance and Trade, 55(2), 450–474. https://doi.org/10.1080/1540496X.2018.1534683


Wankhade, M., Rao, A. C. S., & Kulkarni, C. (2022). A survey on sentiment analysis methods, applications, and challenges. Artificial Intelligence Review, 55(7), 5731–5780. https://doi.org/10.1007/s10462-022-10144-1


Zeng, H., Shao, B., Bian, G., Dai, H., & Zhou, F. (2022). A hybrid deep learning approach by integrating extreme gradient boosting-long short-term memory with generalized autoregressive conditional heteroscedasticity family models for natural gas load volatility prediction. Energy Science & Engineering, 10(7), 1998–2021. https://doi.org/10.1002/ese3.1122